Security in Computer Networks

Multilateral Security in Distributed and by Distributed Systems

Transparencies for the Lecture:
Security and Cryptography I (and the beginning of Security and Cryptography II)

Andreas Pfitzmann
Technische Universität Dresden, Faculty of Computer Science, D-01062 Dresden
Nöthnitzer Str. 46, Room 3071
Phone: +49 351 463-38277, e-mail: pfitza@inf.tu-dresden.de, http://dud.inf.tu-dresden.de/

Field of Specialization: Security and Privacy

Lectures Staff SWS
Security and Cryptography I. II
Introduction to Data Security Pfitzmann 1/1
Cryptography Pfitzmann 2/2
Data Security by Distributed Systems Pfitzmann 1/1
Data Security and Data Protection

- National and International Lazarek 2
Cryptography and -analysis Franz 2
Channel Coding Schönfeld 2/2
Steganography and Multimedia Forensics Franz 2/1
Data Security and Cryptography Clauß /4
Privacy Enhancing Technologies ... Clauß, Köpsell /2
Computers and Society Pfitzmann 2
Seminar: Privacy and Security
Pfitzmann et.al. 2

Areas of Teaching and Research

- Multilateral security, in particular security by distributed systems
- Privacy Enhancing Technologies (PETs)
- Cryptography
- Steganography
- Multimedia-Forensics
- Information- and coding theory
- Anonymous access to the web (project: AN.ON, JAP)
- Identity management (projects: PRIME, PrimeLife, FIDIS)
- SSONET and succeeding activities
- Steganography (project: CRYSTAL)

Aims of Teaching at Universities

Science shall clarify
How something is.
But additionally, and even more important

> Why it is such
or
How could it be
(and sometimes, how should it be).
"Eternal truths" (i.e., knowledge of long-lasting relevance) should make up more than 90% of the teaching and learning effort at universities.

General Aims of Education in IT-security (sorted by priorities)

1. Education to honesty and a realistic self-assessment
2. Encouraging realistic assessment of others, e.g., other persons, companies, organizations
3. Ability to gather security and data protection requirements

- Realistic protection goals
- Realistic attacker models / trust models

4. Validation and verification, including their practical and theoretical limits
5. Security and data protection mechanisms

- Know and understand as well as
- Being able to develop

In short: Honest IT security experts with their own opinion and personal strength.

General Aims of Education in IT-security How to achieve?

1. Education to honesty and a realistic self-assessment As teacher, you should make clear

- your strengths and weaknesses as well as
- your limits.

Oral examinations:

- Wrong answers are much worse than "I do not know".
- Possibility to explicitly exclude some topics at the very start of the examination (if less than 25% of each course, no downgrading of the mark given).
- Offer to start with a favourite topic of the examined person.
- Examining into depth until knowledge ends - be it of the examiner or of the examined person.

General Aims of Education in IT-security How to achieve?

1. Education to honesty and a realistic self-assessment
2. Encouraging realistic assessment of others, e.g., other persons, companies, organizations
Tell, discuss, and evaluate case examples and anecdotes taken from first hand experience.

General Aims of Education in IT-security How to achieve?

1. Education to honesty and a realistic self-assessment
2. Encouraging realistic assessment of others, e.g., other persons, companies, organizations
3. Ability to gather security and data protection requirements

- Realistic protection goals
- Realistic attacker models / trust models

Tell, discuss, and evaluate case examples (and anecdotes) taken from first hand experience.

Students should develop scenarios and discuss them with each other.

General Aims of Education in IT-security How to achieve?

1. Education to honesty and a realistic self-assessment
2. Encouraging realistic assessment of others, e.g., other persons, companies, organizations
3. Ability to gather security and data protection requirements

- Realistic protection goals
- Realistic attacker models / trust models

4. Validation and verification, including their practical and theoretical limits
Work on case examples and discuss them.
Anecdotes!

General Aims of Education in IT-security How to achieve?

1. Education to honesty and a realistic self-assessment
2. Encouraging realistic assessment of others, e.g., other persons, companies, organizations
3. Ability to gather security and data protection requirements

- Realistic protection goals
- Realistic attacker models / trust models

4. Validation and verification, including their practical and theoretical limits
5. Security and data protection mechanisms

- Know and understand as well as
- Being able to develop

Whatever students can discover by themselves in exercises should not be taught in lectures.

Offers by the Chair of Privacy and Data Security

- Interactions between IT-systems and society, e.g., conflicting legitimate interests of different actors, privacy problems, vulnerabilities ...
- Understand fundamental security weaknesses of today's ITsystems
- Understand what Multilateral security means, how it can be characterized and achieved
- Deepened knowledge of the important tools to enable security in distributed systems: cryptography and steganography
- Deepened knowledge in error-free transmission and playback
- Basic knowledge in fault tolerance
- Considerations in building systems: expenses vs. performance vs. security
- Basic knowledge in the relevant legal regulations

Aims of Education: Offers by other chairs

- Deepened knowledge security in operating systems
- Verification of OS kernels
- Deepened knowledge in fault tolerance

Table of Contents (1)

1 Introduction
1.1 What are computer networks (open distributed systems)?
1.2 What does security mean?
1.2.1 What has to be protected?
1.2.2 Protection against whom?
1.2.3 How can you provide for security?
1.2.4 Protection measures - an overview
1.2.5 Attacker model
1.3 What does security in computer networks mean?
2 Security in single computers and its limits
2.1 Physical security
2.1.1 What can you expect - at best?
2.1.2 Development of protection measures
2.1.3 A negative example: Smart cards
2.1.4 Reasonable assumptions on physical security
2.2 Protecting isolated computers against unauthorized access and computer viruses
2.2.1 Identification
2.2.2 Admission control
2.2.3 Access control
2.2.4 Limitation of the threat "computer virus" to "transitive Trojan horse"
2.2.5 Remaining problems

Table of Contents (2)

3 Cryptographic basics

4 Communication networks providing data protection guarantees

5 Digital payment systems and credentials as generalization

6 Summary and outlook

Part of a Computer Network

example. (5) monitoring of patients,(6) transmission of moving pictures during an operation

Why are legal provisions (for security and data protection) not enough ?

History of Communication Networks (1)

1833 First electromagnetic telegraph
1858 First cable link between Europe and North America
1876 Phone operating across a $8,5 \mathrm{~km}$ long test track
1881 First regional switched phone network
1900 Beginning of wireless telegraphy
1906 Introduction of subscriber trunk dialing in Germany, realized bytwo-motion selector, i.e., the first fully automatic telephone exchangethrough electro-mechanics
1928 Introduction of a telephone service Germany-USA, via radio
1949 First working von-Neumann-computer
1956 First transatlantic telephone line
1960 First communications satellite
1967 The datex network of the German Post starts operation,i.e., the first communication network realized particularly for computercommunication (computer network of the first type). The transmission wasdigital, the switching by computers (computer network of the second type).
1977 Introduction of the electronic dialing system (EWS) for telephonethrough the German Post, i.e., the first telephone switch implemented bycomputer (computer network of the second type), but still analogue transmission

History of Communication Networks (2)

1981 First personal computer (PC) of the computer family (IBM PC), which is widely used in private households
1982 investments in phone network transmission systems are increasingly in digital technology
1985 Investments in telephone switches are increasingly in computer-controlled technology. Now transmission is no longer analogue, but digital signals are switched and transmitted (completed 1998 in Germany)
1988 Start-up of the ISDN (Integrated Services Digital Network)
1989 First pocket PC: Atari Portfolio; so the computer gets personal in the narrower sense and mobile
1993 Cellular phone networks are becoming a mass communication service 1994 www commercialization of the Internet
2000 WAP-capable mobiles for $77 €$ without mandatory subscription to services 2003 with IEEE 802.11b, WLAN (Wireless Local Area Network) and

Bluetooth WPAN (Wireless Personal Area Network) find mass distribution 2005 VoIP (Voice over IP) is becoming a mass communication service

Important Terms

computers interconnected by communication network = computer network (of the first type)
computers providing switching in communication network
= computer network (of the second type)
distributed system
spatial
control and implementation structure
open system \neq public system \neq open source system
service integrated system
digital system

Development of the fixed communication networks of the German Post

Threats and corresponding protection goals

threats:

1) unauthorized access to information computer company receives medical files
2) unauthorized modification of information undetected change of medication
3) unauthorized withholding of information or resources detected failure of system
protection goals:
confidentiality

no classification, but pragmatically useful
example: unauthorized modification of a program
4) cannot be detected, but can be prevented;
2)+3) cannot be prevented, but can be detected;
cannot be reversed can be reversed

Definitions of the protection goals

confidentiality

Only authorized users get the information.
integrity
Information are correct, complete, and current or this is detectably not the case.
availability
Information and resources are accessible where and when the authorized userneeds them.

- subsume: data, programs, hardware structure
- it has to be clear, who is authorized to do what in which situation
- it can only refer to the inside of a system

Transitive propagation of errors and attacks

universal Trojan horse

Protection against whom ?

Laws and forces of nature

- components are growing old
- excess voltage (lightning, EMP)
- voltage loss
- flooding (storm tide, break of water pipe)
- change of temperature ...

Human beings

- outsider
- user of the system
- operator of the system
- service and maintenance
- producen of the system
-designer of the system
-producen of the tools to design and produce
-desianer of the tools to design and produce
Trojan horse
-producer of the tools to design and produce the tools to design and produce
-designer... includes user,
- universal
- transitive operator, service and maintenance ... of the system used

Which protection measures against which attacker ?

protection concerning protection against	to achieve the intended	to prevent the unintended
designer and producer of the tools to design and produce	intermediate languages and intermediate results, which are analyzed independently	
designer of the system	see above + several independent designers	
producer of the system	independent analysis of the product	
service and maintenance	control as if a new product, see above	
operator of the system		restrict physical access, restrict and log logical access
user of the system	physical and logical restriction of access	
outsiders	protect the system physically and protect the data cryptographically from outsiders	

Which protection measures against which attacker ?

protection concerning protection against	to achieve the intended	to prevent the unintended				
designer and producer of the tools to design and produce	intermediate languages and intermediate results, which are analyzed independently					
designer of the system	see above + several independent designers					
producer of the system	independent analysis of the product		$	$	control as if a new product, see above	
:---	:---	:---				
service and maintenance	restrict physical access, restrict and log logical access					
operator of the system	physical and logical restriction of access					
user of the system	protect the system physically and protect data					
cryptographically from outsiders						

physical distribution and redundance
unobservability, anonymity, unlinkability: avoid the ability to gather "unnecessary data"

Considered maximal strength of the attacker

attacker model

It's not possible to protect against an omnipotent attacker.

- roles of the attacker (outsider, user, operator, service and maintenance, producer, designer ...), also combined
- area of physical control of the attacker
- behavior of the attacker
- passive / active
- observing / modifying (with regard to the agreed rules)
- stupid / intelligent
- computing capacity:
- not restricted: computationally unrestricted
- restricted: computationally restricted

Observing vs. modifying attacker

observing attacker

modifying attacker
\square possibly breaking the agreed rules

Attacker (model) A is stronger than attacker (model) B, iff A is stronger than B in at least one respect and not weaker in any other respect.

Stronger means:

- set of roles of $A \supset$ set of roles of B,
- area of physical control of $A \supset$ area of physical control of B,
- behavior of the attacker
- active is stronger than passive
- modifying is stronger than observing
- intelligent is stronger than stupid
- computing capacity: not restricted is stronger than restricted
- more money means stronger
- more time means stronger

Defines partial order of attacker (models).

Security in computer networks

confidentiality

- message content is confidential
- place • sender / recipient anonymous
integrity
- detect forgery
- time $\left\{\begin{array}{l}\text { • recipient can prove transmission } \\ \text { • sender can prove transmission }\end{array}\right.$
- ensure payment for service
end-to-end encryption
mechanisms to protect traffic data
authentication system(s)
sign messages
receipt
during service by digital payment systems
diverse networks; fair sharing of resources

Multilateral security

- Each party has its particular protection goals.
- Each party can formulate its protection goals.
- Security conflicts are recognized and compromises negotiated.
- Each party can enforce its protection goals within the agreed compromise.

Security with minimal assumptions about others

Multilateral security (2nd version)

- Each party has its particular goals.
- Each party can formulate its protection goals.
- Security conflicts are recognized and compromises negotiated.
- Each party can enforce its protection goals within the agreed compromise.

Security with minimal assumptions about others

Multilateral security (3rd version)

- Each party has its particular goals.
- Each party can formulate its protection goals.
- Security conflicts are recognized and compromises negotiated.

Security with minimal assumptions about others

Protection Goals: Sorting

	Content	Circumstances
Prevent the unintended	Confidentiality Hiding	Anonymity Unobservability
	Integrity	Accountability
	Availability	Reachability Legal Enforceability

Protection Goals: Definitions

Confidentiality ensures that nobody apart from the communicants can discover the content of the communication.

Hiding ensures the confidentiality of the transfer of confidential user data. This means that nobody apart from the communicants can discover the existence of confidential communication.

Anonymity ensures that a user can use a resource or service without disclosing his/her identity. Not even the communicants can discover the identity of each other.
Unobservability ensures that a user can use a resource or service without others being able to observe that the resource or service is being used. Parties not involved in the communication can observe neither the sending nor the receiving of messages.

Integrity ensures that modifications of communicated content (including the sender's name, if one is provided) are detected by the recipient(s).

Accountability ensures that sender and recipients of information cannot successfully deny having sent or received the information. This means that communication takes place in a provable way.

Availability ensures that communicated messages are available when the user wants to use them.
Reachability ensures that a peer entity (user, machine, etc.) either can or cannot be contacted depending on user interests.
Legal enforceability ensures that a user can be held liable to fulfill his/her legal responsibilities within a reasonable period of time.

Correlations between protection goals

Availability

Accountability

Legal Enforceability

Correlations between protection goals

\Longleftarrow Accountability
 Legal Enforceability

Transitive closure to be added

$\xrightarrow{+}$ strengthens

Correlations between protection goals, two added

Physical security assumptions

Each technical security measure needs a physical "anchoring" in a part of the system which the attacker has neither read access nor modifying access to.

Range from "computer centre X " to "smart card Y "

What can be expected at best ?

Availability of a locally concentrated part of the system cannot be provided against realistic attackers
\rightarrow physically distributed system
... hope the attacker cannot be at many places at the same time.
Distribution makes confidentiality and integrity more difficult. But physical measures concerning confidentiality and integrity are more efficient: Protection against all realistic attackers seems feasible. If so, physical distribution is quite ok.

Tamper-resistant casings

Interference: detect judge

Attack: delay delete data (etc.)

Possibility: several layers, shielding

Shell-shaped arrangement of the five basic functions

delay (e.g. hard material),
detect (e.g. sensors for vibration or pressure)
 judge
delete

Tamper-resistant casings

Interference: detect judge

Attack: delay delete data (etc.)

Possibility: several layers, shielding
Problem: validation ... credibility
Negative example: smart cards

- no detection (battery missing etc.)
- shielding difficult (card is thin and flexible)
- no deletion of data intended, even when power supplied

Golden rule

Correspondence between organizational and IT structures

Identification of human beings by IT-systems

What one is $\xrightarrow{\longrightarrow} \begin{aligned} & \text { hand geometry } \\ & \text { finger print } \\ & \text { picture } \\ & \text { hand-written signature } \\ & \text { retina-pattern }\end{aligned}$
voice
has $\begin{aligned} & \text { typing characteristics } \\ & \\ & \\ & \\ & \text { paper document } \\ & \text { metal key } \\ & \text { magnetic-strip card } \\ & \text { smart card (chip card) }\end{aligned}$

KnOWS $\longrightarrow \begin{aligned} & \longrightarrow \\ & \text { answers to questions }\end{aligned}$

Identification of IT-systems by human beings

What it is

$\begin{array}{ll}\text { KnOWS } & \longrightarrow \text { password } \\ \end{array}$

Where it stands

Identification of IT-systems by IT-systems

$\begin{aligned} \text { What it knows } & \longrightarrow \text { password } \\ & \text { answers to questions } \\ & \text { calculation results for numbers }\end{aligned}$

Wiring from where

Admission and access control

Admission control communicate with authorized partners only

Access control
subject can only exercise operations on objects if authorized.

Computer virus vs. transitive Trojan horse

computer virus
transitive
Trojan horse

unnecessary write access,

necessary write access,
e.g. for compiler
or editor

Access control
Limit spread of attack by as little privileges as possible:
Don't grant unnecessary access rights!
\longrightarrow No computer viruses, only transitive Trojan horses!

Basic facts about Computer viruses and Trojan horses

Other measures fail:

1. Undecidable if program is a computer virus proof (indirect) assumption: decide (•)
```
program counter_example
if decide (counter_example) then no_virus_functionality
    else virus_functionality
```

2. Undecidable if program is Trojan horse

Better be too careful!
3. Even known computer viruses are not efficiently identifiable
self-modification \longrightarrow virus searmer
4. Same for: Trojan horses
5. Damage concerning data is not ascertainable afterwards function inflicting damage could modify itself

Further problems

1. Specify exactly what IT system is to do and what it is not to do.
2. Prove total correctness of implementation.
3. Are all covert channels identified?

Golden Rule

Design and realize IT system as distributed system, such that a limited number of attacking computers cannot inflict significant damage.

Distributed System

Aspects of distribution

physical distribution
distributed control and implementation structure
distributed system:
no entity has a global view on the system

Security in distributed systems

Trustworthy terminals

Trustworthy only to user to others as well

Ability to communicate

Availability by redundancy and diversity

Cryptography

Confidentiality by encryption
Integrity by message authentication codes (MACs) or digital signatures

Availability

Infrastructure with the least possible complexity of design

Connection to completely diverse networks

- different frequency bands in radio networks
- redundant wiring and diverse routing in fixed networks

Avoid bottlenecks of diversity

- e.g. radio network needs same local exchange as fixed network,
- for all subscriber links, there is only one transmission point to the long distance network

Basics of Cryptology

Achievable protection goals: confidentiality, called concealment integrity (= no undetected unauthorized modification of information), called authentication

Unachievable by cryptography: availability - at least not against strong attackers

Symmetric encryption system

Opaque box with lock; 2 identical keys

Example: Vernam cipher (=one-time pad)

secret area
Opaque box with lock; 2 identical keys

Key exchange using symmetric encryption systems

Sym. encryption system: Domain of trust key generation

Asymmetric encryption system

Key distribution using asymmetric encryption systems

public-key register R

Symmetric authentication system

Digital signature system

Key distribution using digital signature systems

Key generation

generation of a random

number r for the key generation: XOR of
r_{1}, created in device,
r_{2}, delivered by producer,
r_{3}, delivered by user,
r_{n}, calculated from keystroke intervals.

Comments on key exchange

Whom are keys assigned to?

1. individual participants asymmetric systems
2. pair relations symmetric systems
3. groups

How many keys have to be exchanged?
n participants
asymmetric systems n per system
symmetric systems $n \cdot(n-1)$
When are keys generated and exchanged?

Security of key exchange limits security available by cryptography:
execute several initial key exchanges

Goal/success of attack

a) key (total break)
b) procedure equivalent to key (universal break)
c) individual messages,
e.g. especially for authentication systems
c1) one selected message (selective break)
c2) any message (existential break)

Types of attack

```
severity a) passive
    a1) ciphertext-only attack
    a2) known-plaintext attack
b) active
(according to encryption system; asym.: either b1 or b2;
sym.: b1 or b2)
b1) signature system: plaintext \(\rightarrow\) ciphertext (signature)
(chosen-plaintext attack)
b2) encryption system: ciphertext \(\rightarrow\) plaintext
(chosen-ciphertext attack)
adaptivity
not adaptive
adaptive
```


criterion: action

passive attacker $\quad \neq \quad$ observing attacker
active attacker $\quad \neq \quad$ modifying attacker

permission

Basic facts about "cryptographically strong" (1)

If no security against computationally unrestricted attacker:

1) using of keys of constant length Z :

- attacker algorithm can always try out all 2^{l} keys
(breaks asym. encryption systems and sym. systems in known-plaintext attack).
- requires an exponential number of operations
(too much effort for $l>100$).
\rightarrow the best that the designer of encryption systems can hope for.

2) complexity theory:

- mainly delivers asymptotic results
- mainly deals with "worst-case"-complexity
\rightarrow useless for security; same for "average-case"-complexity.
goal: problem is supposed to be difficult almost everywhere, i.e. except for an infinitesimal fraction of cases.
- security parameter ℓ (more general than key length; practically useful)
- if $\quad \quad \underbrace{\infty}$, then probability of breaking $\rightarrow 0$.
- hope: slow fast

Basic facts about "cryptographically strong" (2)

3) 2 classes of complexity:
en-/decryption: easy $=$ polynomial in Z
breaking: hard $=$ not polynomial in $Z \approx$ exponential in l Why?
a) harder than exponential is impossible, see 1).
b) self-contained: substituting polynomials in polynomials gives polynomials.
c) reasonable models of calculation (Turing-, RAM-machine) are polynomially equivalent.
For practice polynomial of high degree would suffice for runtime of attacker algorithm on RAM-machine.
4) Why assumptions on computational restrictions, e.g., factoring is difficult?

Complexity theory cannot prove any useful lower limits so far.
Compact, long studied assumptions!
5) What if assumption turns out to be wrong?
a) Make other assumptions.
b) More precise analysis, e.g., fix model of calculation exactly and then examine if polynomial is of high enough degree.
6) Goal of proof: If attacker algorithm can break encryption system, then it can also solve the problem which was assumed to be difficult.

Security classes of cryptographic systems

security

1. attacker assumed to be computationally unrestricted
2. cryptographically strong
3. well analyzed
4. somewhat analyzed
5. kept secret

Overview of cryptographic systems

	concealment		authentication	
	sym. sym. encryption system	asym. asym. encryption system	sym. sym. authentication system	asym. digital signature system
information theoretic	Vernam cipher (onetime pad)		authentication codes	λ
$\begin{array}{ll} & \text { active } \\ \text { crypto- } & \text { attack } \\ \text { graphi- } & \end{array}$	pseudo onetime pad with $s^{2} \bmod n$ generator	$\begin{gathered} 3 \\ \text { CS } \end{gathered}$	4	GMR
canly passive attack	5	system with $s^{2} \bmod n$ generator	6	7
well mathematics	8	RSA	9	RSA
analyzed chaos	DES	10	DES	11

Hybrid cryptosystems (1)

Combine:

- from asymmetric systems: easy key distribution
- from symmetric systems: efficiency (factor 100 ... 10000, SW and HW)
How?
use asymmetric system to distribute key for symmetric system

Encryption:

$$
A \xrightarrow[c_{B}(k), k(M)]{M} B
$$

get C_{B} choose k
decrypt k with d_{B} decrypt M with k

Hybrid cryptosystems (2)

Even more efficient: part of M in first block

If B is supposed also to use k : append $s_{A}(B, k)$
Authentication: k authorized and kept secret

$$
\begin{array}{lll}
\text { get } c_{B} \\
\text { choose } k & \underbrace{M, k(M), c_{B}\left(B, k, s_{A}(B, k)\right)}_{\text {MAC }} & \begin{array}{l}
\text { get } t_{A} \\
\text { decrypt } c_{B}\left(B, k, s_{A}(B, k)\right) \\
\text { test } B, k \text { with } t_{A} \\
\text { test } M \text { with } k
\end{array}
\end{array}
$$

Information-theoretically secure encryption (1)

Information-theoretically secure encryption (2)

"Any ciphertext S may equally well be any plaintext x "

ciphertext	key	plaintext	ciphertext	key	plaintext
s	k	x	s	k	x
00		00	00		00
01		01	01		01
10		10	10		10
11		11			
example :	$\begin{aligned} & \text { n ciph } \\ & 001 \\ & 011 \\ & \hline 010 \end{aligned}$				

Information-theoretically secure encryption (3)

Different probability distributions - how do they fit?

ciphertext
equally
distributed

Information-theoretically secure encryption (4)

Different probability distributions - how do they fit?

ciphertext	t key	plaintext	
s	k	x	
00		00	Equally distributed ciphertexts deciphered with equally distributed
01	\gg	01	keys can yield unevenly distributed plaintexts, iff ciphertexts and keys are
10		10	not independently distributed, i.e., the ciphertexts have been calculated
11	secure cipher	11	using the plaintext and the key.
equally distributed	equally distributed, but not independently of the ciphertexts	unevenly distributed	

Vernam cipher (one-time pad)

All characters are elements of a group G.
Plaintext, key and ciphertext are character strings.
For the encryption of a character string x of length n, a randomly generated and secretly exchanged key
$k=\left(k_{1}, \ldots, k_{n}\right)$ is used.
The $i^{\text {th }}$ plaintext character x_{i} is encrypted as

$$
S_{i}:=x_{i}+k_{i}
$$

It can be decrypted with

$$
x_{i}:=S_{i}-k_{i} .
$$

Evaluation: 1. secure against adaptive attacks
2. easy to calculate
3. but key is very long

Keys have to be very long for information-theoretical security
K is the set of keys,
X is the set of plaintexts, and
S is the set of ciphertexts, which appear at least once.
$|S| \geq|X| \quad$ otherwise it can't be decrypted (fixed k)
$|K| \geq|S| \quad$ so that any ciphertext might as well be any plaintext (fixed x)
therefore $|K| \geq|X|$.
If plaintext cleverly coded, it follows that:
The length of the key must be at least the length of the plaintext.

Preparation: Definition for information-theoretical security

How would you define information-theoretical security for encryption?

Write down at least 2 definitions
and argue for them!

Definition for information-theoretical security

1. Definition for information-theoretical security

(all keys are chosen with the same probability)

$$
\begin{equation*}
\forall S \in S \exists \text { const } \in \mathbb{I N} \forall x \in X:|\{k \in K \mid k(x)=S\}|=\text { const. } \tag{1}
\end{equation*}
$$

The a-posteriori probability of the plaintext x is $W(x \mid S)$, after the attacker got to know the ciphertext S.

2. Definition

$$
\begin{equation*}
\forall S \in S \forall x \in X: W(x \mid S)=W(x) \tag{2}
\end{equation*}
$$

Both definitions are equivalent (if $\mathbf{W}(\mathbf{x})>0$):
According to Bayes: $\quad W(x \mid S)=\frac{W(x) \bullet W(S \mid x)}{W(S)}$
Therefore, (2) is equivalent to

$$
\begin{equation*}
\forall S \in S \forall x \in X: W(S \mid x)=W(S) \tag{3}
\end{equation*}
$$

We show that this is equivalent to

$$
\begin{equation*}
\forall S \in S \exists \text { const }^{\prime} \in \mathbb{I} \mathbb{R} \forall X \in X(S \mid x)=\text { const }{ }^{\prime} . \tag{4}
\end{equation*}
$$

Proof

$(3) \Rightarrow(4)$ is clear with const $t^{\prime}=W(S)$.
Conversely, we show const $=W(S)$:

$$
\begin{aligned}
W(S) & =\sum_{x} W(x) \bullet W(S \mid x) \\
& =\sum_{x} W(x) \bullet c o n s t^{\prime} \\
& =\text { const }^{\prime} \bullet \sum_{x} W(x) \\
& =\text { const }^{\prime} .
\end{aligned}
$$

(4) is already quite the same as (1): In general holds

$$
\mathrm{W}(S \mid x)=\mathrm{W}(\{k \mid k(x)=S\}),
$$

and if all keys have the same probability,

$$
\mathrm{W}(S \mid x)=|\{k \mid k(x)=S\}| /|K| .
$$

Then (4) is equivalent (1) with

$$
\text { const }=\text { const }{ }^{\prime} \cdot|K| .
$$

Another definition for information-theoretical security

Sometimes, students come up with the following definition:

$$
\forall S \in S \quad \forall x \in X: \quad W(S)=W(S \mid x)
$$

This is not equivalent, but a slight modification is:

3. Definition

$$
\forall S \in S \quad \forall x \in X \text { with } W(x)>0: \quad W(S)=W(S \mid x)
$$

Definitions 2. and 3. are equivalent: Remember Bayes:

$$
W(x \mid S)=\frac{W(x) \bullet W(S \mid x)}{W(S)}
$$

$$
W(x \mid S)=W(x) \quad<==>\text { (Bayes) }
$$

$$
\frac{W(x) \cdot W(S \mid x)}{W(S)}=W(x) \quad<==>(\text { if } W(x) \neq 0 \text {, we can divide by } W(x) \text {) }
$$

$$
W(S \mid x)=W(S)
$$

$W(S \mid x)$ as proposed by some students assumes that x may be sent, i.e. $W(x)>0$.

Symmetric authentication systems (1)

Key distribution:

like for symmetric encryption systems
Simple example (view of attacker)
The outcome of tossing a coin (Head (H) or Tail (T)) shall be sent in an authenticated fashion:

		$x, M A C$			
		H,0	H,1	T,0	T,1
	00	H	-	T	-
k	01	H	-	-	T
	10	-	H	T	-
	11	-	H	-	T

Security: e.g. attacker wants to send T.
a) blind: get caught with a probability of 0.5
b) seeing: e.g. attacker gets $\mathrm{H}, 0 \Rightarrow k \in\{00,01\}$
still both, T,0 and T,1, have a probability of 0.5

Symmetric authentication systems (2)

Definition "Information-theoretical security"

with error probability ε :
$\forall x$, MAC (that attacker can see)
$\forall y \neq x \quad$ (that attacker sends instead of x)
\forall MAC' (where attacker chooses the one with the highest probability fitting y)
$W\left(k(y)=\right.$ MAC $^{\prime} \mid k(x)=$ MAC $) \leq \varepsilon$
(probability that MAC' is correct if one only takes the keys k which are still possible under the constraint of (x, MAC) being correct.)

Improvement of the example:
a) 2σ key bits instead of $2: ~ k=k_{1} k_{1}{ }^{*} \ldots k_{\sigma} k_{\sigma}{ }^{*}$ $\mathrm{MAC}=\mathrm{MAC}_{1}, \ldots, \mathrm{MAC}_{6} ; \mathrm{MAC}_{i}$ calculated using $k_{i} k_{i}^{*}$
\Rightarrow error probability $2^{-\sigma}$
b) l message bits

$$
\begin{array}{ccc}
x^{(1)}, \mathrm{MAC}^{(1)} & =\mathrm{MAC}_{1}{ }^{(1)}, \ldots, \mathrm{MAC}_{\sigma}{ }^{(1)} \\
\vdots & \vdots \\
\vdots & \vdots \\
x^{(l)}, \text { MAC }^{(l)} & =\text { MAC }_{1}{ }^{(l)}, \ldots, \text { MAC }_{\sigma}{ }^{(l)}
\end{array}
$$

Symmetric authentication systems (3)

Limits:

σ-bit-MAC \Rightarrow error probability $\geq 2^{-\sigma}$
(guess MAC)
σ-bit-key \Rightarrow error probability $\geq 2^{-\sigma}$
(guess key, calculate MAC)
still clear: for an error probability of $2^{-\sigma}$, a σ-bit-key is too short, because $k(x)=$ MAC eliminates many values of k.

Theorem: you need 2σ-bit-key
(for succeeding messages σ bits suffice, if recipient adequately responds on authentication "errors")

Possible at present: $\approx 4 \sigma \cdot \log _{2}($ length $(x))$
(Wegman, Carter)
much shorter as one-time pad

About cryptographically strong systems (1)

Mathematical secrets:

(to decrypt, to sign ...)
p, q, prime numbers
Public part of key-pair:
(to encrypt, to test ...)

$$
n=p \cdot q
$$

p, q big, at present $\approx 乙=500$ up to 2000 bit (theory: $l \rightarrow \infty$)

Often: special property

$$
\begin{array}{ll}
p \equiv q \equiv 3 \bmod 4 & \text { (the semantics of " } \equiv \ldots \text { mod" is: } \\
& a \equiv b \text { mod } c \text { iff } c \text { divides } a-b, \\
& \text { putting it another way: dividing a and } b \\
& \text { by } c \text { leaves the same remainder) }
\end{array}
$$

About cryptographically strong systems (2)

application:
s^{2}-mod- n-generator,
GMR and many others,
e.g., only well analyzed systems like RSA
(significant alternative: only "discrete logarithm", based on number theory, too, similarly well analyzed)
necessary: 1. factoring is difficult
2. to generate p, q is easy
3. operations on the message with n alone, you can only invert using p, q

Factoring

clear: in NP \Rightarrow but difficulty cannot be proved yet
complexity at present

$$
\begin{aligned}
L(n) & =e^{c \cdot \sqrt[3]{\ln (n) \cdot(\ln \ln (n))^{2}}} & , c \approx 1,9 \\
& \approx e^{\sqrt[3]{l}} & \text { "sub-exponential" }
\end{aligned}
$$

practically up to 155 decimal digits in the year 1999
174 decimal digits in the year 2003
200 decimal digits in the year 2005
232 decimal digits in the year 2010
(notice:
\exists faster algorithms, e.g., for $2^{r} \pm 1$, but this doesn't matter)
assumption: factoring is hard
(notice : If an attacker could factor, e.g., every $1000^{\text {th }} n$, this would be unacceptable.)

Factoring assumption

\forall PPA \mathcal{F} (probabilistic polynomial algorithm, which tries to factor)
\forall polynomials Q
$\exists L \forall L \geq L$: (asymptotically holds:)
If p, q are random prime numbers of length L and $n=p \cdot q$:

$$
W(\mathcal{F}(n)=(p, q)) \leq \frac{1}{Q(l)}
$$

(probability that \mathcal{F} truly factors
decreases faster as $\frac{1}{\text { any polynomial. }}$.)
trustworthy ??
the best analyzed assumption of all available

Search of prime numbers (1)

1. Are there enough prime numbers? (important also for factoring assumption)

$$
\frac{\pi(x)}{x} \approx \frac{1}{\ln (x)} \quad \begin{aligned}
& \pi(x) \text { number of the prime numbers } \leq x \\
& \text { "prime number theorem" }
\end{aligned}
$$

\Rightarrow up to length ℓ more than every $Z^{\text {th }}$.
And \approx every $2^{\text {nd }} \equiv 3$ mod $4 \quad$ "Dirichlet's prime number theorem"
2. Principle of search: repeat
choose random number $p(\equiv 3 \bmod 4)$ test whether p is prime
until p prime

Search of prime numbers (2)

3. Primality tests:

(notice: trying to factor is much too slow)

probabilistic; "Rabin-Miller"
special case $p \equiv 3 \bmod 4$:

$$
\begin{array}{ll}
p \text { prime } & \Rightarrow \forall a \neq 0 \bmod p: a^{\frac{p-1}{2}} \equiv \pm 1 \quad(\bmod p) \\
p \text { not prime } & \Rightarrow \text { for } \leq \frac{1}{4} \text { of } a^{\prime} \mathrm{s}: a^{\frac{p-1}{2}} \equiv \pm 1(\bmod p)
\end{array}
$$

\Rightarrow test this for m different, independently chosen values of a,

$$
\text { error probability } \leq \frac{1}{4^{m}}
$$

Calculating with and without p, q (1)

$Z_{n}:$ ring of residue classes $\bmod n \hat{=}\{0, \ldots, n-1\}$

- +, -, • fast
- exponentiation "fast" (square \& multiply)
example: $\quad 7^{26}=7^{(11010)_{2}} \quad$; from left

- gcd (greatest common divisor) fast in Z (Euclidean Algorithm)

Calculating with and without $p, q(2)$

$Z_{n}{ }^{*}$: multiplicative group

$$
a \in Z_{n}^{*} \Leftrightarrow \operatorname{gcd}(a, n)=1
$$

- Inverting is fast (extended Euclidean Algorithm)

Determine to a,n the values u, v with

$$
a \cdot u+n \cdot v=1
$$

Then: $\quad u \equiv a^{-1} \bmod n$
example: $3^{-1} \bmod 11$?

$$
=-11+4 \cdot 3
$$

$$
\begin{aligned}
& 11=3 \cdot 3+2 \\
& 3 \stackrel{=}{=}+\underline{2}+1 \longrightarrow=1 \cdot 3-1 \cdot(11-3 \cdot 3) \\
& \\
&=1 \cdot 3-1 \cdot 2
\end{aligned}
$$

$$
\Rightarrow 3^{-1} \equiv 4 \bmod 11
$$

Calculating with and without p, q (3)

Number of elements of $Z_{n}{ }^{*}$
The Euler Φ - Function is defined as

$$
\Phi(n):=|\{a \in\{0, \ldots, n-1\} \mid \operatorname{gcd}(a, n)=1\}|,
$$

whereby for any integer $n \neq 0$ holds: gcd $(0, n)=|n|$.
It immediately follows from both definitions, that

$$
\left|Z_{n}{ }^{*}\right|=\Phi(n) .
$$

For $n=p \bullet q, p, q$ prime and $p \neq q$ we can easily calculate $\Phi(n)$:

$$
\Phi(n)=(p-1) \cdot(q-1)
$$

$\operatorname{gcd} \neq 1$ have the numbers 0 , then $p, 2 p, \ldots,(q-1) p$ and $q, 2 q, \ldots,(p-1) q$, and these $1+(q-1)+(p-1)=p+q-1$ numbers are for $p \neq q$ all different.

Calculating with and without p, q (4)

Relation between $Z_{n} \leftrightarrow Z_{p}, Z_{q}$:
Chinese Remainder Theorem (CRA)

$$
x \equiv y \bmod n \Leftrightarrow x \equiv y \bmod p \wedge x \equiv y \bmod q
$$

since

$$
n|(x-y) \quad \Leftrightarrow p|(x-y) \quad \wedge q \mid(x-y)
$$

$n=p \cdot q, p, q$ prime, $p \neq q$
\Rightarrow To calculate $\mathrm{f}(x) \bmod n$, at first you have to calculate \bmod p, q separately.
$y_{p}:=f(x) \bmod p$
$y_{q}:=f(x) \bmod q$

Calculating with and without p, q (5)

Compose ?
extended Euclidean: $u \cdot p+v \cdot q=1$

$$
y:=(u \cdot p) \cdot y_{q}+(v \cdot q) \cdot y_{p} \quad\left\{\begin{array}{l}
\equiv y_{p} \bmod p \\
\equiv y_{q} \bmod q
\end{array}\right.
$$

Since :

	$\bmod p$	$\bmod q$
$u \cdot p$	0	1
$v \cdot q$	1	0
y	$0 \cdot y_{q}+1 \cdot y_{p}$	$1 \cdot y_{q}+0 \cdot y_{p}$
	$\equiv y_{p}$	$\equiv y_{q}$

CRA

Calculating with and without p, q (6)

squares and roots

$$
\mathrm{QR}_{n}:=\left\{x \in \mathrm{Z}_{n}^{*} \mid \exists y \in \mathrm{Z}_{n}^{*}: y^{2} \equiv x \bmod n\right\}
$$

x : "quadratic residue"
y : "root of x "
$-y$ is also a root

$$
\begin{array}{ll}
1^{2} \equiv 1 & 3^{2} \equiv 1 \\
7^{2} \equiv 1 & 5^{2} \equiv 1
\end{array}\left\{\begin{array}{l}
(-1)^{2}=1 \\
4 \\
\text { roots }
\end{array}\right.
$$

QR_{n} multiplicative group:

$$
\begin{aligned}
x_{1}, x_{2} \in \mathrm{QR}_{n} \Rightarrow & x_{1} \cdot x_{2} \in \mathrm{QR}_{n}:\left(y_{1} y_{2}\right)^{2}=y_{1}^{2} y_{2}^{2}=x_{1} x_{2} \\
& x_{1}^{-1} \in \mathrm{QR}_{n}:\left(y_{1}^{-1}\right)^{2}=\left(y_{1}^{2}\right)^{-1}=x_{1}^{-1}
\end{aligned}
$$

Calculating with and without p, q (7)

squares and roots mod p, prime:
Z_{p} field

$$
\Rightarrow \text { as usual } \leq 2 \text { roots }
$$

$$
x \not \equiv 0, p \neq 2: 0 \text { or } 2 \text { roots }
$$

$$
\Rightarrow\left|\mathrm{QR}_{p}\right|=\frac{p-1}{2}
$$

| x | 0 | 1 | $2 \ldots$ | $\ldots-1$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $-\frac{p-1}{2} \ldots$ | -2 | -1 | $=p-1$ | | | |
| x^{2} | 0 | 1 | $4 \ldots$ | \ldots | \ldots | 4 | 1 |

Jacobi symbol

$$
\left(\frac{x}{p}\right]:=\left\{\begin{aligned}
1 & \text { if } x \in Q R_{p} \quad\left(\text { for } x \in Z_{p}^{*}\right) \\
-1 & \text { else }
\end{aligned}\right.
$$

Calculating with and without p, q (8)

Continuation squares and roots $\bmod p$, prime:
Euler criterion : $\quad\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} \bmod p$
(i.e. fast algorithm to test whether square)

Proof using little Theorem of Fermat: $\quad x^{p-1} \equiv 1 \bmod p$
co-domain ok: $x^{\frac{p-1}{2}} \in\{ \pm 1\}$, because $\left(x^{\frac{p-1}{2}}\right)^{2} \equiv 1$
x square : $\quad\left(\frac{x}{p}\right)=1 \Rightarrow x^{\frac{p-1}{2}} \equiv\left(y^{2}\right)^{\frac{p-1}{2}} \equiv y^{p-1} \equiv 1$
x nonsquare: The $\frac{p-1}{2}$ solutions of $x^{\frac{p-1}{2}} \equiv 1$ are the squares. So no nonsquare satisfies the equation.
Therefore: $\quad x^{\frac{p-1}{2}} \equiv-1$.

Calculating with and without p, q (9)

squares and roots $\bmod p \equiv 3 \bmod 4$

- extracting roots is easy: given $\mathrm{x} \in \mathrm{QR}_{p}$

$$
w:=x^{\frac{p+1}{4}} \quad \bmod p \text { is root }
$$

proof:

$$
\text { 1. } p \equiv 3 \bmod 4 \Rightarrow \frac{p+1}{4} \in \mathrm{~N}
$$

2. $w^{2}=x^{\frac{p+1}{2}}=x^{\frac{p-1}{2}+1}=x^{\frac{p-1}{2}} \bullet x=1 \bullet x$

Euler, $x \in \mathrm{QR}_{p}$
In addition: $w \in \mathrm{QR}_{p}$ (power of $x \in \mathrm{QR}_{p}$) \rightarrow extracting roots iteratively is possible

- $\left(\frac{-1}{p}\right) \equiv(-1)^{\frac{p-1}{2}}$

$$
\bar{〒}_{p=4 r+3}(-1)^{\frac{4 r+2}{2}}=(-1)^{2 r+1}=-1
$$

$\Rightarrow-1 \notin \mathrm{QR}_{p}$
\Rightarrow of the roots $\pm w:-w \notin Q R_{p}$ (otherwise $-1=(-w) \cdot w^{-1} \in \mathrm{QR}_{p}$)

Calculating with and without p, q (10)

squares and roots mod n using p, q
(usable as secret operations)

- testing whether square is simple $\quad(n=p \cdot q, p, q$ prime, $p \neq q)$

$$
x \in \mathrm{QR}_{n} \Leftrightarrow x \in \mathrm{QR}_{p} \wedge x \in \mathrm{QR}_{q}
$$

Chinese Remainder Theorem

$$
\begin{aligned}
\text { proof: " } \Rightarrow " x & \equiv w^{2} \bmod n \Rightarrow x \equiv w^{2} \bmod p \wedge x \equiv w^{2} \bmod q \\
" \Leftarrow " x & \equiv w_{p}^{2} \bmod p \wedge x \equiv w_{q}^{2} \bmod q \\
& w:=\operatorname{CRA}\left(w_{p}, w_{q}\right) \\
& \text { then } w \equiv w_{p} \bmod p \wedge w \equiv w_{q} \bmod q \\
& \text { using the Chinese Remainder Theorem for } \\
& w^{2} \equiv w_{p}^{2} \equiv x \bmod p \wedge w^{2} \equiv w_{q}^{2} \equiv x \bmod q \\
& \text { we have } \\
& w^{2} \equiv x \bmod n
\end{aligned}
$$

Calculating with and without p, q (11)

Continuation squares und roots mod n using p, q
$x \in \mathrm{QR}_{n} \Rightarrow x$ has exactly 4 roots
$\left(\bmod p\right.$ and $\bmod q: \pm w_{p}, \pm w_{q}$.
therefore the 4 combinations according to the Chinese Remainder Theorem)

- extracting a root is easy $(p, q \equiv 3 \bmod 4)$ determine roots $w_{p}, w_{q} \bmod p, q$

$$
w_{p}:=x^{\frac{p+1}{4}} \quad w_{q}:=x^{\frac{q+1}{4}}
$$

combine using CRA

Calculating with and without p, q (12)

Continuation squares und roots $\bmod n$ using p, q
Jacobi symbol $\quad\left(\frac{x}{n}\right):=\left(\frac{x}{p}\right) \bullet\left(\frac{x}{q}\right)$
So: $\left(\begin{array}{c}x \\ - \\ n\end{array}\right)=\left\{\begin{array}{lll}+1 & \text { if } & \begin{array}{l}x \in \mathrm{QR}_{p} \wedge x \in \mathrm{QR}_{q} \\ \\ -1\end{array} \quad \text { if } \\ x \notin \mathrm{QR}_{p} \wedge x \notin \mathrm{QR}_{q}\end{array}\right.$

So : $x \in \mathrm{QR}_{n} \quad \Rightarrow \quad\left[\frac{x}{n}\right]=1$
\nLeftarrow does not hold

Calculating with and without p, q (13)

continuation squares und roots mod n using p, q
to determine the Jacobi symbol is easy

$$
\begin{aligned}
& \text { e.g. } p \equiv q \equiv 3 \bmod 4 \\
& \left(\frac{-1}{n}\right)=\left(\frac{-1}{p}\right) \cdot\left(\frac{-1}{q}\right)=(-1) \bullet(-1)=1 \\
& \text { but }-1 \notin \mathrm{QR}_{n}, \text { because } \notin \mathrm{QR}_{p, q}
\end{aligned}
$$

Calculating with and without p, q (14)

squares and roots mod n without p, q

- extracting roots is difficult: provably so difficult as to factor
a) If someone knows 2 significantly different roots of an $x \bmod n$, then he can definitely factor n.
 p in one factor, q in the other

$$
\Rightarrow \operatorname{gcd}\left(w_{1}+w_{2}, n\right) \text { is } p \text { or } q
$$

Calculating with and without p, q (15)

Continuation squares und roots mod n without p, q
b) Sketch of "factoring is difficult \Rightarrow extracting a root is difficult" proof of "factoring is easy \Leftarrow extracting a root is easy"
So assumption : $\exists \mathcal{W} \in \mathrm{PPA}$: algorithm extracting a root
to show : $\exists \mathcal{F} \in \mathrm{PPA}$: factoring algorithm
structure

Calculating with and without p, q (16)

to b)
\mathcal{F} : input n
repeat forever
choose $w \in Z_{n}{ }^{*}$ at random, set $x:=w^{2}$
$w^{\prime}:=\mathcal{W}(n, x)$
test whether $w^{\prime} \neq \pm w$, if so factor according to a) break

- to determine the Jacobi symbol is easy
(if p and q unknown: use quadratic law of reciprocity)
but note: If $\left[\frac{x}{n}\right]=1$, determine whether $x \in \mathrm{QR}_{n}$ is difficult
(i.e. it does not work essentially better than to guess)

QRA = quadratic residuosity assumption

The \boldsymbol{s}^{2}-mod-n-Pseudo-random Bitstream Generator (PBG)

Idea: short initial value (seed) \rightarrow long bit sequence (should be random from a polynomial attacker's point of view)

Scheme:

Requirements:

- gen and PBG are efficient
- PBG is deterministic
(\Rightarrow sequence reproducible)
- secure: no probabilistic polynomial test can distinguish PBG-streams from real random streams

Method

- key value: $\quad p, q$ prime, big, $\equiv 3 \bmod 4$
$n=p \cdot q$
- initial value (seed):

$$
s \in Z_{n}^{*}
$$

- PBG:

$$
\begin{array}{ll}
s_{0}:=s^{2} \bmod n & \\
s_{i+1}:=s_{i}^{2} \bmod n & b_{i}:=s_{i} \bmod 2 \\
\quad \ldots & \text { (last bit) }
\end{array}
$$

$\left.$| Example: $n=3 \cdot 11=33, s=2$
 index | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| $16^{2} \bmod 33$ |
| :--- |
| $=8 \cdot 32=8 \cdot(-1)=25$ |
| $\mathrm{~s}_{i}:$ | \right\rvert\, | 4 | 16 | 25 | 31 | 4 | $25^{2}=(-8)^{2}=64 \equiv 31$
 $\mathrm{~b}_{i}:$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 0 | $31^{2}=(-2)^{2}=4$ |

Note: length of period no problem with big numbers (Blum / Blum / Shub 1983 / 86)

$\boldsymbol{s}^{\mathbf{2}}$-mod-n-generator as symmetric encryption system

Purpose: application as symmetric encryption system:
"Pseudo one-time pad"
Compare: one-time pad: add long real random bit stream with plaintext Pseudo one-time pad: add long pseudo-random stream with plaintext

Idea:

If no probabilistic polynomial test can distinguish pseudo-random streams from real random streams, then the pseudo one-time pad is as good as the one-time pad against polynomial attacker.
(Else the attacker is a test !)

Construction works with any good PBG

chosen ciphertext-plaintext attack

Security of the s^{2}-mod-n-generator (1)

s^{2}-mod- n-generator is cryptographically strong: \Leftrightarrow
$\forall \mathcal{P} \in \mathrm{PPA} \quad\left\{\right.$ predictor for $\left.b_{0}\right\}$
\forall constants $\delta, 0<\delta<1 \quad\{$ frequency of the "bad" $n\}$
$\forall t \in \mathrm{~N}: \quad$ \{ degree of the polynomial \}
if $\mathcal{Z}(=|n|)$ sufficiently big it holds: for all keys n except of at most a δ-fraction
$W\left(b_{0}=\mathcal{P}\left(n, b_{1} b_{2} \ldots b_{k}\right) \mid s \in Z_{n}{ }^{*}\right.$ random $)<\frac{1}{2}+\frac{1}{q^{t}}$

Security of the $\boldsymbol{s}^{\mathbf{2}}$-mod-n-generator (2)

Proof: Contradiction to QRA in 2 steps

Assumption: $\quad s^{2}$-mod-n-generator is weak, i.e. there is a predictor \mathcal{P}, which guesses b_{0} with ε-advantage given $b_{1} b_{2} b_{3} \ldots$

Step 1: \quad Transform \mathcal{P} in \mathcal{P}^{*}, which to a given s_{1} of $Q R_{n}$ guesses the last bit of s_{0} with ε-advantage.

Given s_{1}.
Generate $b_{1} b_{2} b_{3} \ldots$ with s^{2}-mod-n-generator, apply \mathcal{P} to that stream.
\mathcal{P} guesses b_{0} with ε-advantage. That is exactly the result of \mathcal{P}^{*}.
Step 2: \quad Construct using \mathcal{P}^{*} a method \mathcal{R}, that guesses with ε-advantage, whether a given s^{*} with Jacobi symbol +1 is a square.

Given s^{*}. Set $s_{1}:=\left(s^{*}\right)^{2}$.
Apply \mathcal{P}^{*} to s_{1}. \mathcal{P}^{*} guesses the last bit of s_{0} with ε-advantage, where s^{*} and s_{0} are roots of $s_{1} ; s_{0} \in Q R_{n}$.
Therefore $s^{*} \in \mathrm{QR}_{n} \Leftrightarrow s^{*}=s_{0}$

Security of the s^{2}-mod-n-generator (3)

The last bit b^{*} of s^{*} and the guessed b_{0} of s_{0} suffice to guess correctly, because

1) if $s^{*}=s_{0}$, then $b^{*}=b_{0}$
2) to show: if $s^{*} \neq s_{0}$, then $b^{*} \neq b_{0}$
if $s^{*} \neq s_{0}$ because of the same Jacobi symbols, it holds

$$
s^{*} \equiv-s_{0} \bmod n
$$

therefore $s^{*}=n-s_{0}$ in Z
n is odd, therefore s^{*} and s_{0} have different last bits
The constructed \mathcal{R} is in contradiction to QRA.

Notes:

1) You can take $O(\log (Z))$ in place of 1 bit per squaring.
2) There is a more difficult proof that s^{2}-mod- n-generator is secure under the factoring assumption.

Security of PBGs more precisely (1)

Requirements for a PBG:

"strongest" requirement: PBG passes each probabilistic Test T with polynomial running time.
pass = streams of the PBG cannot be distinguished from real random bit stream with significant probability by any probabilistic test with polynomial running time.
probabilistic test with polynomial running time $=$ probabilistic polynomial-time restricted algorithm that assigns to each input of $\{0,1\}^{*}$ a real number of the interval $[0,1]$.
(value depends in general on the sequence of the random decisions.)
Let α_{m} be the average (with respect to an even distribution) value, that T assigns to a random m-bit-string.

Security of PBGs more precisely (2)

PBG passes T iff

For all $t>0$, for sufficiently big Z the average (over all initial values of length ζ), that T assigns to the poly (l)-bit-stream generated by the PBG, is in $\alpha_{\text {poly }(L)} \pm 1 / l^{t}$
To this "strongest" requirement, the following 3 are equivalent (but easier to prove):

For each generated finite initial bit string, of which any (the rightmost, leftmost) bit is missing, each
polynomial-time algorithm \mathscr{P} (predictor) can "only guess" the missing bit.
Idea of proof: From each of these 3 requirements follows the "strongest"
easy: construct test from predictor
hard: construct predictor from test

Security of PBGs more precisely (3)

Proof (indirect): Construct predictor \mathscr{P} from the test T.
For a $t>0$ and infinitely many l the average
(over all initial values of length ζ), that T assigns to the generated poly (l)-bit-string of the PBG is (e.g. above)
$\alpha_{\text {poly }(L)} \pm 1 / l^{t}$. Input to T a bit string of 2 parts: $j+k=\operatorname{poly}(Z)$
real random
$\mathrm{A}=\left\{r_{1} \ldots r_{j} r_{j+1} b_{1} \ldots b_{k}\right\}$ are assigned a value closer to $\alpha_{\text {poly }}(L)$
$\mathrm{B}=\left\{r_{1} \ldots r_{j} b_{0} b_{1} \ldots b_{k}\right\}$ are assigned a value more distant to $\alpha_{\text {poly }(l)}$, generated by PBG e.g. higher
Predictor for bit string $b_{1} \ldots b_{k}$ constructed as follows:
T on input $\left\{r_{1} \ldots r_{j} 0 b_{1} \ldots b_{k}\right\}$ estimate α^{0}
T on input $\left\{r_{1} \ldots r_{j} 1 b_{1} \ldots b_{k}\right\}$ estimate α^{1}
Guess $b_{0}=0$ with probability of $1 / 2+1 / 2\left(\alpha^{0}-\alpha^{1}\right)$

Summary of PBG and motivation of GMR

Reminder:

s^{2}-mod- n-generator is secure against passive attackers for arbitrary distributions of messages
\longrightarrow reason for arrow: random number' in picture asymmetric encryption systems
\longrightarrow memorize term: probabilistic encryption

Terms:
one-way function
one-way permutation
one-way = nearly nowhere practically invertible
variant: invertible with secret (trap door)

Motivation:

active attack on s^{2}-mod- n-generator as asymmetric encryption system

Scheme of security proofs (1)

Scheme of security proofs (2)

(adaptive) active attacker
attacked person

Seemingly, there are no provably secure cryptosystems against adaptive active attacks.
A constructive security proof seems to be a game with fire.

Why fallacy ?

attacker
Alg.1: uniform for any key Alg.1: non uniform: only own key Alg.2: has to demand uniformity

GMR - signature system
Shafi Goldwasser, Silvio Micali, Ronald Rivest:
A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks; SIAM J. Comput. 17/2 (April 1988) 281 - 308

Main ideas

1) Map a randomly chosen reference \mathcal{R}, which is only used once.
2) Out of a set of collision-resistant permutations (which are invertible using a secret) assign to any message m one permutation.

$$
\mathcal{R} \underset{\mathcal{F}_{n, m}\left(\operatorname{Sig}_{m}^{\mathcal{R}}\right)}{\stackrel{\mathcal{F}_{n, m}^{-1}(\mathcal{R})}{\rightleftarrows}} \operatorname{Sig}_{m}^{\mathcal{R}}
$$

GMR - signature system (1)

Consequence

"variation of m " (active attack) now means also a
"variation of \mathcal{R} " - a randomly chosen reference, that is unknown to the attacker when he chooses m.

Problems

1) securing the originality of the randomly chosen reference
2) construction of the collision-resistant permutations (which are invertible only using the secret) which depend on the messages

Solution of problem 2

Idea Choose 2 collision-resistant permutations f_{0}, f_{1} (which are invertible only using the secret) and compose $\mathcal{F}_{n, m}$ by $\mathrm{f}_{0}, \mathrm{f}_{1}$.
\{for simplicity, we will write f_{0} instead of $f_{n, 0}$ and f_{1} instead of $\left.f_{n, 1}\right\}$
Def. Two permutations f_{0}, f_{1} are called collision-resistant iff it is difficult to find any x, y, z with $f_{0}(x)=f_{1}(y)=z$
Note Proposition: collision-resistant \Rightarrow one-way Proof (indir.): If f_{i} isn't one-way: 1) choose $x ; 2$) $\left.\mathrm{f}_{1-i}(x)=z ; 3\right) \mathrm{f}_{i}^{-1}(z)=y$

GMR - signature system (2)

Construction:

For $m=b_{0} b_{1} \ldots b_{k}\left(b_{0}, \ldots, b_{k} \in\{0,1\}\right)$ let

$$
\begin{aligned}
\mathcal{F}_{n, m} & :=\mathrm{f}_{b_{0}} \quad{ }^{\circ} \mathrm{f}_{b_{1}} \quad \circ \ldots{ }^{\circ} \mathrm{f}_{b_{k}} \\
\mathcal{F}_{n, m}^{-1} & :=\mathrm{f}_{b_{k}}^{-1} \quad \circ \ldots{ }^{\circ} \mathrm{f}_{b_{1}}^{-1} \quad \circ{ }^{\circ} \mathrm{f}_{b_{0}}^{-1}
\end{aligned}
$$

Signing: $\mathcal{R} \xrightarrow{\mathrm{f}^{-1}}{ }_{b_{0}} \mathrm{f}_{b_{0}}^{-1}(\mathcal{R}) \xrightarrow{\mathrm{f}_{b_{1}}^{-1}} \ldots \xrightarrow{\mathrm{f}_{b_{k}}^{-1}} \mathrm{f}_{b_{k}}^{-1}\left(\ldots\left(\mathrm{f}_{b_{0}}^{-1}(\mathcal{R})\right) \ldots\right)=$ Sig $\begin{gathered}\mathcal{R} \\ m\end{gathered}$
Testing: $\operatorname{Sig}_{m}^{\mathcal{R}} \xrightarrow{\mathrm{f}_{b_{k}}} f_{b_{k}}\left(\operatorname{Sig}_{m}^{\mathcal{R}}\right) \xrightarrow{\mathrm{f}_{b_{k-1}}} \ldots \xrightarrow{\mathrm{f}_{b_{0}}} f_{b_{0}}\left(\ldots\left(\mathrm{f}_{b_{k}}\left(\operatorname{Sig}_{m}^{\mathcal{R}}\right)\right) \ldots\right)=\mathcal{R} \quad ?$

Example:
$\operatorname{Sig}_{1110}^{\mathcal{R}} \cdot \xrightarrow{\mathrm{f}_{0}} \cdot \xrightarrow{\mathrm{f}_{1}} \cdot \xrightarrow{\mathrm{f}_{1}} \cdot \stackrel{\mathrm{f}_{1}}{\longrightarrow} \cdot \mathcal{R}$

Problem: intermediate results of the tests are valid signatures for the start section of the message m

Idea: coding the message prefix free
Def. A mapping <•>: $\mathrm{M} \rightarrow \mathrm{M}$ is called prefix free iff $\forall m_{1}, m_{2} \in \mathrm{M}: \forall b \in\{0,1\}^{+}:<m_{1}>b \neq<m_{2}>$ <•> injective

Example for a prefix free mapping $0 \rightarrow 00 ; 1 \rightarrow 11$; end identifier 10

Prefix-free encoding should be efficient to calculate both ways.

To factor is difficult (1)

Theorem: If factoring is difficult, then
collision-resistant permutation pairs exist
Proof:
secret: $p \bullet q=n ; p \equiv_{8} 3$ und $q \equiv_{8} 7$
(Blum numbers)
it holds: $\left[\begin{array}{l}\frac{-1}{n} \\ \hline\end{array}=1 \quad-1 \notin \mathrm{QR}_{n}\right.$

$$
\left[\frac{2}{n}\right]=-1
$$

$f_{0}(x):=\left\{\begin{array}{l}x^{2} \bmod n, \text { if }<\frac{n}{2} \\ -x^{2} \bmod n, \text { else }\end{array}\right.$
$f_{1}(x):=\left\{\begin{array}{c}(2 x)^{2} \bmod n, \text { if }<\frac{n}{2} \\ -(2 x)^{2} \bmod n, \text { else }\end{array}\right.$

Domain: $\left\{x \in Z_{n}{ }^{*} \left\lvert\,\left(\frac{x}{n}\right)=1\right.,0<x<\frac{n}{2}\right\}$

To factor is difficult (2)

to show: 1) Permutation = one-to-one mapping with co-domain = domain
2) To calculate the inverse is easy using p, q
3) If there is a fast collision finding algorithm, then there is a fast algorithm to factor.
$-1 \notin \mathrm{QR}_{n}$
$x^{2} \equiv_{n}-(2 y)^{2}$ cannot hold, since $(2 y)^{2} \in \mathrm{QR}_{n}$.
Therefore $x^{2} \equiv_{n}(2 y)^{2} \Rightarrow(x+2 y)(x-2 y) \equiv_{n} 0$.
Because $\left(\frac{x}{n}\right)=1$ and $\left(\frac{ \pm 2 y}{n}\right)=-1$ it follows that

$$
x \nexists_{n} \pm 2 y
$$

Therefore gcd ($x \pm 2 y, n$) provides a non-trivial factor of n, i.e. p or q.

Solution of problem 1 (1)

The attacker gets to know \mathcal{R}_{i} only after

$$
\mathcal{F}_{n,<\mathcal{R}_{i}>} \quad\left(\operatorname{Sig}_{\mathcal{R}_{i}} r_{r_{i}}\right)=r_{i} ?
$$ choosing m_{i}.

$$
\mathcal{F}_{n,<r_{r} r_{1},}>\left(\operatorname{Sig}_{r_{0}}^{r_{j} r_{n}}\right)=r_{j} ?
$$

$$
\mathcal{F}_{n^{i}<m_{i}>}\left(\operatorname{Sig}_{m_{i}}^{\mathcal{R}_{i}}\right)=\mathcal{R}_{i} ?
$$

Solution of problem 1 (2)

Proposition If the permutation pairs are collision resistant, then the adaptive active attacker can't sign any message with GMR.

Proof A forged signature leads either to a collision in the tree of references (contradiction) or to an additional legal signature. So the attacker has inverted the collisionresistant permutation. With this ability he could generate collisions (contradiction).

Note

In the proof you dispose the "Oracle" (the attacked person) by showing that the attacker can generate "half" the tree from the bottom or (exclusive) "half" the tree from the top with the same probability distribution as the attacked person.

Lesson:

randomly chosen references each used only once (compare one-time-pad) make adaptive active attacks ineffective
\rightarrow arrow explained (random number z') in figure signature system

GMR signature system

RSA - asymmetric cryptosystem

R. Rivest, A. Shamir, L. Adleman: A Method for obtaining Digital Signatures and Public-Key Cryptosystems; Communications of the ACM 21/2 (Feb. 1978) 120-126.

Key generation

1) Choose two prime numbers p and q at random as well as stochastically independent, with $|p| \approx|q|=\ell, p \neq q$
2) Calculate $n:=p \cdot q$
3) Choose c with $3 \leq c<(p-1)(q-1)$ and $\operatorname{gcd}(c,(\underbrace{p-1)(q-1)}_{\Phi(n)})=1$
4) Calculate d using p, q, c as multiplicative inverse of $c \bmod \Phi(n)$ $c \cdot d \equiv 1(\bmod \Phi(n))$
5) Publish c and n.

En- / decryption

exponentiation with c respectively d in Z_{n}
Proposition: $\forall m \in Z_{n}$ holds: $\left(m^{c}\right)^{d} \equiv m^{c \cdot d} \equiv\left(m^{d}\right)^{c} \equiv m(\bmod n)$

Proof (1)

$c \cdot d \equiv 1(\bmod \Phi(n)) \Leftrightarrow$

$$
\begin{array}{ll}
\exists k \in Z: c \cdot d-1 & =k \cdot \Phi(n) \Leftrightarrow \\
\exists k \in Z: c \cdot d & =k \cdot \Phi(n)+1
\end{array}
$$

Therefore

$$
m^{c \cdot d} \equiv m^{k \cdot \Phi(n)+1}
$$

$(\bmod n)$
Using the Theorem of Fermat

$$
\forall m \in Z_{n}{ }^{*}: m^{\Phi(n)} \equiv 1
$$

it follows for all m coprime to p

$$
m^{p-1} \equiv 1 \quad(\bmod p)
$$

Because $p-1$ is a factor of $\Phi(n)$, it holds

$$
m^{k \cdot \Phi(n)+1} \equiv_{p} m^{k \cdot(p-1)(q-1)+1} \equiv_{p} m \underbrace{\underbrace{\left(m^{p-1}\right.}_{1})^{k \cdot(q-1)}}_{1} \equiv_{p} m
$$

Proof (2)

Holds, of course, for $m \equiv_{p} 0$. So we have it for all $m \in Z_{p}$.
Same argumentation for q gives

$$
m^{k \cdot \Phi(n)+1} \equiv_{q} m
$$

Because congruence holds relating to p as well as q, according to the CRA, it holds relating to $p \cdot q=n$.

Therefore, for all $m \in Z_{n}$

$$
m^{c \cdot d} \equiv m^{k \cdot \Phi(n)+1} \equiv m \quad(\bmod n)
$$

Attention:

There is (until now?) no proof RSA is easy to break \Rightarrow to factor is easy

Naive insecure use of RSA

RSA as asymmetric encryption system

Code message (if necessary in several pieces) as number $m<n$

Encryption of m :
Decryption of m^{c} :
$m^{c} \bmod n$
$\left(m^{c}\right)^{d} \bmod n=m$

RSA as digital signature system

Renaming:
Signing of m :
Testing of m, m^{s} :
$c \rightarrow t, d \rightarrow s$
$m^{s} \bmod n$
$\left(m^{s}\right)^{t} \bmod n=m$?

RSA as asymmetric encryption system: naive

RSA as asymmetric encryption system: example

RSA as digital signature system: naive

Attack on encryption with RSA naive

Attack on digital signature with RSA naive

Attack on digital signature with RSA: alternative presentation

$$
\begin{aligned}
& \left(x^{s}\right)^{t} \\
& u \bullet v)^{t} \\
& \equiv X \begin{array}{l}
\text { message } \\
\text { wanted }
\end{array} \\
& =U^{t} \cdot V^{t} \begin{array}{c}
\text { chosen } \\
\text { message } v
\end{array} \\
& \text { let it sign } \\
& (x \cdot y)^{s} \\
& =x^{s} \cdot y^{s} \\
& =\quad x^{s} \bullet v \\
& \text { divide by } V \text {, get } x^{s}
\end{aligned}
$$

Transition to Davida's attacks

simple version of Davida's attack: (against RSA as signature system)

1. Given $\quad \operatorname{Sig}_{1}=m_{1}{ }^{s}$

$$
\mathrm{Sig}_{2}=m_{2}{ }^{s}
$$

$\Rightarrow \quad \operatorname{Sig}:=\operatorname{Sig}_{1} \cdot \operatorname{Sig}_{2}=\left(m_{1} \cdot m_{2}\right)^{s}$
New signature generated!
(Passive attack, m not selectable.)
2. Active, desired Sig $=m^{s}$

Choose any $m_{1} ; \quad m_{2}:=m \cdot m_{1}{ }^{-1}$
Let m_{1}, m_{2} be signed.
Further as mentioned above.
3. Active, more skillful (Moore) \{see next transparency\} "Blinding": choose any r,

$$
\begin{aligned}
& m_{2}:=m \cdot r^{t} \\
& m_{2}^{s}=m^{s} \cdot r^{t \cdot s}=m^{s} \cdot r
\end{aligned}
$$

$$
\stackrel{r^{-1}}{\sim} m^{s}=S i g
$$

Active Attack of Davida against RSA

1.) asymmetric encryption system:

Decryption of the chosen message m^{c}
Attacker chooses random number $r, 0<r<n$ generates $r^{c} \bmod n$; this is uniformly distributed in [1, $n-1$] lets the attacked person decrypt $r^{c} \cdot m^{c} \equiv{ }_{n}$ prod
Attacked person generates prod ${ }^{d} \bmod n$
Attacker knows that prod ${ }^{d} \equiv_{n}\left(r^{c} \cdot m^{c}\right)^{d} \equiv_{n} r^{c \cdot d} \cdot m^{c \cdot d} \equiv_{n} r \cdot m$ divides prod ${ }^{d}$ by r and thereby gets m.
$\underbrace{\text {. }}_{\text {If this doesn't work: Factor } n \text {. }}$
2.) digital signature system:

Signing of the chosen message m.
Attacker chooses random number $r, 0<r<n$ generate r^{t} mod n; this is uniformly distributed in [1, $n-1$] lets the attacked person sign $r^{t} \cdot m \equiv \equiv_{n}$ prod
Attacked person generates prods mod n
Attacker knows that prods $\equiv_{n}\left(r^{t} \cdot m\right)^{s} \equiv_{n} r^{t \cdot s} \bullet m^{s} \equiv_{n} r \cdot m^{s}$ divides prod ${ }^{s}$ by r and thereby gets m^{s}.
$\underbrace{}_{\text {If this doesn't work: Factor } n \text {. }}$

function

h() : collision-resistant hash function
1.) asymmetric encryption system
plaintext messages have to fulfill redundancy predicate m, redundancy \Rightarrow test if $h(m)=$ redundancy
2.) digital signature system

Before signing, h is applied to the message

$$
\begin{aligned}
\text { signature of } m & =(\mathrm{h}(m))^{s} \bmod n \\
\text { test if } \mathrm{h}(m) & =\left((\mathrm{h}(m))^{s}\right)^{t} \bmod n
\end{aligned}
$$

Attention: There is no proof of security (so far?)

RSA as asymmetric encryption system

collision-resistant hash function h

- globally known -

RSA as digital signature system

secret area
random number

collision-resistant hash function h

- globally known -

Faster calculation of the secret operation

$\bmod p, q$ separately:

$$
y^{d} \equiv \mathrm{w}
$$

once and for all:
every time:
proof:

$$
\left.\begin{array}{l}
d_{p}:=c^{-1} \bmod p-1 \Rightarrow\left(y^{d_{p}}\right)^{c} \equiv y \bmod p \\
d_{q}:=c^{-1} \bmod q-1 \Rightarrow\left(y^{d_{q}}\right)^{c} \equiv y \bmod q \\
\text { set } w:=\operatorname{CRA}\left(y^{d_{p}}, y^{d_{q}}\right)
\end{array}\right] \left.\begin{aligned}
& \left(y^{\left.d_{p}\right)^{c} \equiv y \bmod p}\right. \\
& \left(y^{d_{q}}\right)^{c} \equiv y \bmod q
\end{aligned} \right\rvert\, \begin{array}{cc}
c & \bmod n
\end{array}
$$

How much faster?
complexity exponentiation: $\approx l^{3}$
If the length: $\approx 2 \cdot\left(\frac{l}{2}\right)^{3}=\frac{l^{3}}{4}$
complexity 2 exponentiations of half the length
complexity CRA: 2 multiplications $\approx 2 \cdot l^{2}$
So: \approx Factor 4

$c^{\text {th }}$ roots are unique

Shown : each $y \in Z_{n}$ has $c^{\text {th }}$ root

 \Rightarrow Function $w \rightarrow w^{c}$ surjective \Rightarrow As well injective.
Symmetric Cryptosystem DES

One round

Feistel ciphers

Encryption function f

Terms

- Substitution-permutation networks
- Confusion - diffusion

Generation of a key for each of the $\mathbf{1 6}$ rounds

The complementation property of DES

$\operatorname{DES}(\bar{k}, \bar{x})=\overline{\operatorname{DES}(k, x)}$

One round

Encryption function f

Generalization of DES

1.) $56 \Rightarrow 16 \cdot 48=768$ key bits
2.) variable substitution boxes
3.) variable permutations
4.) variable expansion permutation
5.) variable number of rounds

Stream cipher

synchronous
self synchronizing

Block cipher

Modes of operation:
Simplest: ECB (electronic codebook) each block separately
But: concealment: block patterns identifiable authentication: blocks permutable

Main problem of ECB

Telefax example (\rightarrow compression is helpful)

Electronic Codebook (ECB)

Cipher Block Chaining (CBC)

All lines transmit as many characters as a block comprises
Addition mod appropriately chosen modulus
Θ Subtraction mod appropriately chosen modulus

Cipher Block Chaining (CBC) (2)

CBC for authentication

Pathological Block cipher

plaintext block (length b)

plaintext block (length b - 1)

ciphertext block (length $b-1$)

Cipher FeedBack (CFB)

Cipher FeedBack (CFB) (2)

CFB for authentication

Output FeedBack (OFB)

Plain Cipher Block Chaining (PCBC)

All lines transmit as many characters as a block comprises
\oplus Addition mod appropriately chosen modulus, e.g. 2
Θ Subtraction mod appropriately chosen modulus, e.g. 2
$\sqrt{\natural}$ Any function, e.g. addition mod $2^{\text {Block length }}$

Output Cipher FeedBack (OCFB)

Properties of the operation modes

	ECB	CBC	PCBC	CFB	OFB	OCFB
Utilization of indeterministic block cipher	+ possible			- impossible		
Use of an asymmetric block cipher results in	+ asymmetric stream cipher			- symmetric stream cipher		
Length of the units of encryption	- determined by block length of the block cipher			+ user-defined		
Error extension	only within the block (assuming the borders of blocks are preserved)	2 blocks (assuming the borders of blocks are preserved)	potentially unlimited	$1+\lceil b / r\rceil$ blocks, if error placed rightmost, else possibly one block less	none as long as no bits are lost or added	potentially unlimited
Qualified also for authentication?	yes, if redundancy within every block	yes, if deterministic block cipher	yes, even concealment in the same pass	yes, if deterministic block cipher	yes, if adequate redundancy	yes, even concealment in the same pass

Collision-resistant hash function using determ. block cipher

cryptographically strong no, but well analyzed

Diffie-Hellman key agreement (1)

practically important:
theoretically important:
patent exhausted before that of RSA \rightarrow used in PGP from Version 5 on steganography using public keys
based on difficulty to calculate discrete logarithms
Given a prime number \boldsymbol{p} and \boldsymbol{g} a generator of $Z_{p}{ }^{*}$

$$
g^{x}=h \bmod p
$$

\boldsymbol{x} is the discrete logarithm of \boldsymbol{h} to basis g modulo \boldsymbol{p} :

$$
x=\log _{g}(h) \bmod p
$$

discrete logarithm assumption

Discrete logarithm assumption

```
\forallPPA D\mathcal{L}
                                    (probabilistic polynomial algorithm, which tries to
                                    calculate discrete logarithms)
\forall polynomials Q
\existsL\forallZ\geqL: (asymptotically holds)
If p}\mathrm{ is a random prime of length }
thereafter g}\mathrm{ is chosen randomly within the generators of }\mp@subsup{Z}{p}{*
x is chosen randomly in Z }\mp@subsup{\textrm{Z}}{}{*
and g}\mp@subsup{g}{}{x}=h\operatorname{mod}
    W}(\mathcal{D}\mathcal{L}(p,g,h)=x)\leq\frac{1}{Q(C)
    (probability that }\mathcal{DL}\mathrm{ really calculates the discrete logarithm,
    decreases faster than
    any polynomial )
```

trustworthy ??
practically as well analyzed as the assumption factoring is hard

Diffie-Hellman key agreement (2)

Diffie-Hellman assumption

Diffie-Hellman (DH) assumption:
Given $p, g, g^{x} \bmod p$ and $g^{y} \bmod p$
Calculating $g^{x y} \bmod p$ is difficult.

DH assumption is stronger than the discrete logarithm assumption

- Able to calculate discrete Logs $\Rightarrow \mathrm{DH}$ is broken.

Calculate from $p, g, g^{x} \bmod p$ and $g^{y} \bmod p$ either x or y. Calculate $g^{x y} \bmod p$ as the corresponding partner of the DH key agreement.

- Until now it couldn't be shown:

Using $p, g, g^{x} \bmod p, g^{y} \bmod p$ and $g^{x y} \bmod p$ either x or y can be calculated.

Find a generator in cyclic group $\mathrm{Z}_{p}{ }^{\text {* }}$

Find a generator of a cyclic group $Z_{p}{ }^{*}$
Factor $p-1=: p_{1}{ }^{e_{1}} \cdot p_{2}{ }^{e_{2}} \cdot \ldots \cdot p_{k}{ }^{e_{k}}$

1. Choose a random element g in $Z_{p}{ }^{*}$
2. For i from 1 to k :

$$
\begin{aligned}
& b:=g^{\frac{p-1}{p_{i}}} \bmod p \\
& \text { If } b=1 \text { go to } 1 \text {. }
\end{aligned}
$$

Digital signature system

Security is asymmetric, too usually: unconditionally secure for recipient only cryptographically secure for signer
new: signer is absolutely secure against breaking his signatures provable only cryptographically secure for recipient
message domain
signature domain

distribution of risks if signature is forged: 1. recipient
2. insurance or system operator
3. signer

Fail-stop signature system

Undeniable signatures

Signature system for blindly providing of signatures

Threshold scheme (1)

Threshold scheme:

Secret S

n parts
k parts: efficient reconstruction of S
$k-1$ parts: no information about S

Implementation: polynomial interpolation (Shamir, 1979)

Decomposition of the secret:
Let secret S be an element of Z_{p}, p being a prime number.
Polynomial $q(x)$ of degree $k-1$:
Choose $a_{1}, a_{2}, \ldots, a_{k-1}$ randomly in Z_{p}
$q(x):=S+a_{1} x+a_{2} x^{2}+\ldots+a_{k-1} x^{k-1}$
n parts $(i, q(i))$ with $1 \leq i \leq n$, where $n<p$.

Threshold scheme (2)

Reconstruction of the secret:

$$
\begin{aligned}
& k \text { parts }\left(x_{j}, q\left(x_{j}\right)\right)(j=1 \ldots k): \\
& q(x)=\sum_{j=1}^{k} q\left(x_{j}\right) \prod_{m=1, m \neq j} \frac{\left(x-x_{m}\right)}{\left(x_{j}-x_{m}\right)} \bmod p
\end{aligned}
$$

The secret S is $q(0)$.

Sketch of proof:

1. $k-1$ parts $(j, q(j))$ deliver no information about S, because for each value of S there is still exactly one polynomial of degree $k-1$.
2. correct degree $k-1$; delivers for any argument x_{j} the value $q\left(x_{j}\right)$ (because product delivers on insertion of x_{j} for x the value 1 and on insertion of all other x_{i} for x the value 0).

Threshold scheme (3)

Polynomial interpolation is Homomorphism w.r.t. +

Addition of the parts \Rightarrow Addition of the secrets

Share refreshing
1.) Choose random polynomial $q^{\text {a }}$ for $S^{\star}=0$
2.) Distribute the n parts ($i, q^{(}(i)$)
3.) Everyone adds his "new" part to his "old" part \rightarrow "new" random polynomial $q+q$ " with "old" secret S

- Repeat this, so that anyone chooses the random polynomial once
- Use verifiable secret sharing, so that anyone can test that polynomials are generated correctly.

Observability of users in switched networks

Observability of users in switched networks

Observability of users in switched networks

radio
television
countermeasure encryption

- link encryption
- end-to-end encryption
telephone exchange
- operator
- manufacturer (Trojan horse)
internet

Problem: traffic data who with whom? when? how long? how much information?

Aim: "protect" traffic data (and so data on interests, too) so that they couldn't be captured.

Observability of users in broadcast networks

Reality or fiction?

Since about 1990 reality
Video-8 tape
5 Gbyte
= 3 * all census data of 1987 in Germany memory costs < 25 EUR

100 Video-8 tapes (or in 2003: 2 hard drive disks each with 250 G-Byte for < 280 EUR each) store
all telephone calls of one year:
Who with whom?
When?
How long?
From where?

Excerpt from: 1984

With the development of television, and the technical advance which made it possible to receive and transmit simultaneously on the same instrument, private life came to an end.

George Orwell, 1948

Problems with exchanges

Unsolved problems by dedicated design of separate

 exchange:

+ encryption:
- message contents
- connection data, if speaker identification or \subset message contents Trojan horse vs. add-on equipment: see below

Interception of participant's terminal line (to scramble the signals is expensive and ineffective, encryption of the analogue signals is not possible):

- message contents (content of calls)
- connection data
- number of the callee
- speaker identification or \subset message contents

Mechanisms to protect traffic data

Protection outside the network

Public terminals

- use is cumbersome

Temporally decoupled processing

- communications with real time properties

Local selection

- transmission performance of the network
- paying for services with fees

Protection inside the network

Attacker (-model)

Questions:

- How widely distributed ? (stations, lines)
- observing / modifying ?
- How much computing capacity ? (computationally unrestricted, computationally restricted)

Unobservability of an event E
For attacker holds for all his observations B: $0<\mathrm{P}(\mathrm{E} \mid \mathrm{B})<1$ perfect: $P(E)=P(E \mid B)$

Anonymity of an entity
Unlinkability of events
if necessary: partitioning in classes

