Security in Computer Networks

Multilateral Security in Distributed and by Distributed Systems

Transparencies for the Lecture:

Security and Cryptography I (and the beginning of Security and Cryptography II)

Andreas Pfitzmann Technische Universität Dresden, Faculty of Computer Science, D-01062 Dresden Nöthnitzer Str. 46, Room 3071 Phone: +49 351 463-38277, e-mail: <u>pfitza@inf.tu-dresden.de</u>, <u>http://dud.inf.tu-dresden.de/</u>

Field of Specialization: Security and Privacy

Lectures Security and Cryptography I, II	Staff	SWS
Introduction to Data Security	Pfitzmann	1/1
Cryptography	Pfitzmann	2/2
Data Security by Distributed Systems	Pfitzmann	1/1
Data Security and Data Protection		
 National and International 	Lazarek	2
Cryptography and -analysis	Franz	2
Channel Coding	Schönfeld	2/2
Steganography and Multimedia Forensics	Franz	2/1
Data Security and Cryptography	Clauß	/4
Privacy Enhancing Technologies	Clauß, Köpsell	/2
Computers and Society	Pfitzmann	2
Seminar: Privacy and Security	Pfitzmann et.al.	2

Areas of Teaching and Research

- Multilateral security, in particular security by distributed systems
- Privacy Enhancing Technologies (PETs)
- Cryptography
- Steganography
- Multimedia-Forensics
- Information- and coding theory

- Anonymous access to the web (project: AN.ON, JAP)
- Identity management (projects: PRIME, PrimeLife, FIDIS)
- SSONET and succeeding activities
- Steganography (project: CRYSTAL)

Science shall clarify *How something is.*

But additionally, and even more important *Why it is such*

or

How could it be

(and sometimes, how should it be).

"Eternal truths" (i.e., knowledge of long-lasting relevance) should make up more than 90% of the teaching and learning effort at universities.

General Aims of Education in IT-security (sorted by priorities)

- 1. Education to **honesty** and a **realistic self-assessment**
- 2. Encouraging realistic **assessment of others**, e.g., other persons, companies, organizations
- 3. Ability to gather **security and data protection requirements**
 - Realistic protection goals
 - Realistic attacker models / trust models
- 4. Validation and verification, including their practical and theoretical limits
- 5. Security and data protection mechanisms
 - Know and understand as well as
 - Being able to develop

In short: Honest IT security experts with their own opinion and personal strength.

6

1. Education to **honesty** and a **realistic self-assessment**

As teacher, you should make clear

- your strengths and weaknesses as well as
- your limits.

Oral examinations:

- Wrong answers are much worse than "I do not know".
- Possibility to explicitly exclude some topics at the very start of the examination (if less than 25% of each course, no downgrading of the mark given).
- Offer to start with a favourite topic of the examined person.
- Examining into depth until knowledge ends be it of the examiner or of the examined person.

- 1. Education to **honesty** and a **realistic self-assessment**
- 2. Encouraging realistic **assessment of others**, e.g., other persons, companies, organizations

Tell, discuss, and evaluate case examples and anecdotes taken from first hand experience.

8

- 1. Education to **honesty** and a **realistic self-assessment**
- 2. Encouraging realistic **assessment of others**, e.g., other persons, companies, organizations
- 3. Ability to gather **security and data protection requirements**
 - Realistic protection goals
 - Realistic attacker models / trust models

Tell, discuss, and evaluate case examples (and anecdotes) taken from first hand experience.

Students should develop scenarios and discuss them with each other.

- 1. Education to **honesty** and a **realistic self-assessment**
- 2. Encouraging realistic **assessment of others**, e.g., other persons, companies, organizations
- 3. Ability to gather **security and data protection requirements**
 - Realistic protection goals
 - Realistic attacker models / trust models
- 4. Validation and verification, including their practical and theoretical limits

Work on case examples and discuss them.

Anecdotes!

- 1. Education to **honesty** and a **realistic self-assessment**
- 2. Encouraging realistic **assessment of others**, e.g., other persons, companies, organizations
- 3. Ability to gather security and data protection requirements
 - Realistic protection goals
 - Realistic attacker models / trust models
- 4. Validation and verification, including their practical and theoretical limits
- 5. Security and data protection mechanisms
 - Know and understand as well as
 - Being able to develop

Whatever students can discover by themselves in exercises should not be taught in lectures.

Offers by the Chair of Privacy and Data Security

- Interactions between IT-systems and society, e.g., conflicting legitimate interests of different actors, privacy problems, vulnerabilities ...
- Understand fundamental security weaknesses of today's ITsystems
- Understand what Multilateral security means, how it can be characterized and achieved
- Deepened knowledge of the important tools to enable security in distributed systems: cryptography and steganography
- Deepened knowledge in error-free transmission and playback
- Basic knowledge in **fault tolerance**
- Considerations in building systems: expenses vs. performance vs. security
- Basic knowledge in the relevant legal regulations

Aims of Education: Offers by other chairs

- Deepened knowledge security in operating systems
- Verification of OS kernels
- Deepened knowledge in fault tolerance

Table of Contents (1)

1 Introduction

- 1.1 What are computer networks (open distributed systems)?
- 1.2 What does security mean?
 - 1.2.1 What has to be protected?
 - 1.2.2 Protection against whom?
 - 1.2.3 How can you provide for security?
 - 1.2.4 Protection measures an overview
 - 1.2.5 Attacker model
- 1.3 What does security in computer networks mean?
- 2 Security in single computers and its limits
 - 2.1 Physical security
 - 2.1.1 What can you expect at best?
 - 2.1.2 Development of protection measures
 - 2.1.3 A negative example: Smart cards
 - 2.1.4 Reasonable assumptions on physical security
 - 2.2 Protecting isolated computers against unauthorized access and computer viruses
 - 2.2.1 Identification
 - 2.2.2 Admission control
 - 2.2.3 Access control
 - 2.2.4 Limitation of the threat "computer virus" to "transitive Trojan horse"
 - 2.2.5 Remaining problems

3 Cryptographic basics

4 Communication networks providing data protection guarantees

5 Digital payment systems and credentials as generalization

6 Summary and outlook

Part of a Computer Network

example. (5) monitoring of patients,(6) transmission of moving pictures during an operation

Why are legal provisions (for security and data protection) not enough ?

History of Communication Networks (1)

1833 First electromagnetic telegraph

1858 First cable link between Europe and North America

- 1876 Phone operating across a 8,5 km long test track
- 1881 First regional **switched phone network**
- 1900 Beginning of wireless telegraphy
- 1906 Introduction of **subscriber trunk dialing** in Germany, realized by two-motion selector, i.e., the first fully automatic telephone exchange through electro-mechanics
- 1928 Introduction of a telephone service Germany-USA, via radio
- 1949 First working von-Neumann-computer
- 1956 First transatlantic telephone line
- 1960 First communications satellite

1967 The datex network of the German Post starts operation,

i.e., the first communication network realized particularly for computer communication (computer network of the first type). The transmission was digital, the switching by computers (computer network of the second type).
1977 Introduction of the electronic dialing system (EWS) for telephone through the German Post, i.e., the first telephone switch implemented by computer (computer network of the second type), but still analogue transmission

1981 First personal computer (PC) of the computer family (**IBM PC**), which is widely used in private households

1982 investments in phone network **transmission systems** are increasingly in **digital** technology

1985 Investments in telephone switches are increasingly in computer-controlled technology. Now transmission is no longer analogue,

but **digital signals are switched and transmitted** (completed 1998 in Germany) 1988 Start-up of the **ISDN** (Integrated Services Digital Network)

1989 First pocket PC: **Atari Portfolio**; so the computer gets personal in the narrower sense and mobile

1993 **Cellular phone networks** are becoming a mass communication service 1994 **www** commercialization of the Internet

2000 **WAP-capable mobiles** for 77 € without mandatory subscription to services 2003 with IEEE 802.11b, **WLAN** (Wireless Local Area Network) and

Bluetooth **WPAN** (Wireless Personal Area Network) find mass distribution 2005 **VoIP** (Voice over IP) is becoming a mass communication service

distributed system spatial control and implementation structure

open system **≠ public** system **≠ open source** system

service integrated system

digital system

18

Development of the fixed communication networks of the ¹⁹ German Post

threats:	example: medical information	on system	protection goals:
,	orized access to information er company receives medical files		confidentiality
	orized modification of information ted change of medication	≥ total <	integrity ≅ partial correctness
informa detected no class	orized withholding of ation or resources failure of system ification, but pragmatically us unauthorized modification of a pro		 availability for authorized users
1) ca	nnot be detected, but can be prev	ented;	cannot be reversed

cannot be detected, but can be prevented;
 cannot be prevented, but can be detected;

cannot be reversed can be reversed

Definitions of the protection goals

confidentiality

Only authorized users get the information.

integrity

Information are correct, complete, and current or this is detectably not the case.

availability

Information and resources are accessible where and when the authorized user needs them.

- subsume: data, programs, hardware structure
- it has to be clear, who is authorized to do what in which situation
- it can only refer to the inside of a system

Transitive propagation of errors and attacks

universal Trojan horse

Protection against whom ?

Which protection measures against which attacker ?

protection concerning protection against	to achieve the intended	to prevent the unintended
designer and producer of the tools to design and produce	intermediate languages and intermediate results, which are analyzed independently	
designer of the system	see above + several independent designers	
producer of the system	independent analysis of the product	
service and maintenance	control as if a new product, see above	
operator of the system		restrict physical access, restrict and log logical access
user of the system	physical and logical restriction of access	
outsiders	protect the system physically and protect the data cryptographically from outsiders	

Which protection measures against which attacker ?

protection concerning protection against	to achieve the intended	to prevent the unintended
designer and producer of the tools to design and produce	000	and intermediate results, ed independently
designer of the system	see above + several ir	ndependent designers
producer of the system	independent analy	sis of the product
service and maintenance	control as if a new	product, see above
		restrict physical access, restrict and log
operator of the system		logical access
user of the system	physical and logical	restriction of access
outsiders	protect the system phys cryptographicall	sically and protect data y from outsiders

physical distribution and redundance

unobservability, anonymity, unlinkability: avoid the ability to gather "unnecessary data"

Considered maximal strength of the attacker

attacker model

Observing vs. modifying attacker

Attacker (model) *A* is stronger than attacker (model) *B*, iff *A* is stronger than *B* in at least one respect and not weaker in any other respect.

- Stronger means:
- set of roles of $A \supset$ set of roles of B,
- area of physical control of $A \supset$ area of physical control of B,
- behavior of the attacker
 - active is stronger than passive
 - modifying is stronger than observing
- intelligent is stronger than stupid
 - computing capacity: not restricted is stronger than restricted
- more money means stronger
- more time means stronger

Defines partial order of attacker (models).

confidentiality

- message content is confidential
- place sender / recipient anonymous

integrity

- detect forgery
- time {
 recipient can prove transmission
 sender can prove transmission

 - ensure payment for service

authentication system(s) sign messages receipt during service by digital payment systems

availability

enable communication

diverse networks; fair sharing of resources

end-to-end encryption mechanisms to protect traffic data

Multilateral security

- Each party has its particular protection goals.
- Each party can formulate its protection goals.
- Security conflicts are recognized and compromises negotiated.
- Each party can enforce its protection goals within the agreed compromise.

Security with minimal assumptions about others

Multilateral security (2nd version)

- Each party has its particular goals.
- Each party can formulate its protection goals.
- Security conflicts are recognized and compromises negotiated.
- Each party can enforce its protection goals within the agreed compromise.

Security with minimal assumptions about others

Multilateral security (3rd version)

- Each party has its particular goals.
- Each party can formulate its protection goals.
- Security conflicts are recognized and compromises negotiated.
- Each party can enforce its protection goals within the agreed compromise. As far as limitations of this cannot be avoided, they equally apply to all parties.

Security with minimal assumptions about others

Protection Goals: Sorting

	Content	Circumstances
Prevent the unintended	Confidentiality Hiding	Anonymity Unobservability
Achieve the intended	Integrity	Accountability
	Availability	Reachability Legal Enforceability

Confidentiality ensures that nobody apart from the communicants can discover the content of the communication.

Hiding ensures the confidentiality of the transfer of confidential user data. This means that nobody apart from the communicants can discover the existence of confidential communication.

Anonymity ensures that a user can use a resource or service without disclosing his/her identity. Not even the communicants can discover the identity of each other.

Unobservability ensures that a user can use a resource or service without others being able to observe that the resource or service is being used. Parties not involved in the communication can observe neither the sending nor the receiving of messages.

Integrity ensures that modifications of communicated content (including the sender's name, if one is provided) are detected by the recipient(s).

Accountability ensures that sender and recipients of information cannot successfully deny having sent or received the information. This means that communication takes place in a provable way.

Availability ensures that communicated messages are available when the user wants to use them.

Reachability ensures that a peer entity (user, machine, etc.) either can or cannot be contacted depending on user interests.

Legal enforceability ensures that a user can be held liable to fulfill his/her legal responsibilities within a reasonable period of time.

Correlations between protection goals

Correlations between protection goals

Correlations between protection goals, two added

Each technical security measure needs a physical "anchoring" in a part of the system which the attacker has neither read access nor modifying access to.

Range from "computer centre X" to "smart card Y"

What can be expected at best?

Availability of a locally concentrated part of the system cannot be provided against *realistic* attackers

\rightarrow physically distributed system

... hope the attacker cannot be at many places at the same time.

Distribution makes **confidentiality** and **integrity** more difficult. But physical measures concerning confidentiality and integrity are more efficient: Protection against *all realistic* attackers seems feasible. If so, physical distribution is quite ok.

Tamper-resistant casings

Shell-shaped arrangement of the five basic functions

Tamper-resistant casings

Interference: detect judge

Attack: delay delete data (etc.)

Possibility: several layers, shielding

Problem: validation ... credibility

Negative example: smart cards

- no detection (battery missing etc.)
- shielding difficult (card is thin and flexible)
- no deletion of data intended, even when power supplied

Golden rule

Correspondence between organizational and IT structures

Identification of human beings by IT-systems

Identification of IT-systems by human beings

Identification of IT-systems by IT-systems

Wiring from where

Admission and access control

Admission control communicate with authorized partners only

Access control

subject can only exercise operations on objects if authorized.

47

Computer virus vs. transitive Trojan horse

No computer viruses, only transitive Trojan horses!

Basic facts about Computer viruses and Trojan horses

Other measures fail:

1. Undecidable if program is a computer virus proof (indirect) assumption: decide (•)

program counter_example
if decide (counter_example)

```
then no_virus_functionality
else virus_functionality
```

2. Undecidable if program is Trojan horse

Better be too careful!

- 3. Even known computer viruses are not efficiently identifiable self-modification virus seamer
- 4. Same for: Trojan horses
- 5. Damage concerning data is not ascertainable afterwards function inflicting damage could modify itself

Specify exactly what IT system is to do and what it is *not* to do.
 Prove *total correctness* of implementation.
 today
 Are all *covert channels* identified?

Golden Rule

Design and realize IT system as *distributed* system, such that a limited number of attacking computers cannot inflict significant damage.

Aspects of distribution

physical distribution distributed control and implementation structure

distributed system:

no entity has a global view on the system

Trustworthy terminals

Trustworthy only to user to others as well

Ability to communicate

Availability by redundancy and diversity

Cryptography

Confidentiality byencryptionIntegrity bymessage authentication codes (MACs) or digital signatures

Infrastructure with the least possible complexity of design

Connection to completely diverse networks

- different frequency bands in radio networks
- redundant wiring and diverse routing in fixed networks

Avoid bottlenecks of diversity

- e.g. radio network needs same local exchange as fixed network,
- for all subscriber links, there is only one transmission point to the long distance network

Achievable protection goals: confidentiality, called concealment integrity (= no undetected unauthorized modification of information), called authentication

Unachievable by cryptography: availability – at least not against strong attackers

Symmetric encryption system

Opaque box with lock; 2 identical keys

Example: Vernam cipher (=one-time pad)

secret area

Opaque box with lock; 2 identical keys

Key exchange using symmetric encryption systems

Sym. encryption system: Domain of trust key generation

Asymmetric encryption system

Opaque box with spring lock; 1 key

60

Key distribution using asymmetric encryption systems

Symmetric authentication system

Show-case with lock; 2 identical keys

Digital signature system

Show-case with lock; 1 key

Key distribution using digital signature systems

Key generation

generation of a random number *r* for the key generation:

XOR of

- r_1 , created in device,
- r_2 , delivered by producer,
- r_3 , delivered by user,
- *r_n*, calculated from keystroke intervals.

Whom are keys assigned to?

- 1. individual participants asymmetric systems
- 2. pair relations symmetric systems
- 3. groups

How many keys have to be exchanged?

n participantsasymmetric systemsn per systemsymmetric systems $n \cdot (n-1)$

When are keys generated and exchanged?

Security of key exchange limits security available by cryptography:

execute several initial key exchanges

a) key (total break)

b) procedure equivalent to key (universal break)

c) individual messages,

e.g. especially for authentication systemsc1) one selected message (selective break)c2) any message (existential break)

Types of attack

Basic facts about "cryptographically strong" (1)

If no security against computationally unrestricted attacker:

- 1) using of keys of constant length \mathcal{L} :
 - attacker algorithm can always try out all 2^L keys (breaks asym. encryption systems and sym. systems in known-plaintext attack).
 - requires an exponential number of operations (too much effort for l > 100).
 - \rightarrow the best that the designer of encryption systems can hope for.
- 2) complexity theory:
 - mainly delivers asymptotic results
 - mainly deals with "worst-case"-complexity
 - \rightarrow useless for security; same for "average-case"-complexity.

goal: problem is supposed to be difficult almost everywhere, i.e. except for an infinitesimal fraction of cases.

- security parameter \mathcal{L} (more general than key length; practically useful)

- if
$$\iota \rightarrow \infty$$
, then probability of breaking → 0.- hope:slowfast

Basic facts about "cryptographically strong" (2)

3) 2 classes of complexity:

en-/decryption: easy = polynomial in \mathcal{L} breaking: hard = not polynomial in $\mathcal{L} \approx$ exponential in \mathcal{L} Why?

a) harder than exponential is impossible, see 1).

b) self-contained: substituting polynomials in polynomials gives polynomials.

c) reasonable models of calculation (Turing-, RAM-machine) are polynomially equivalent.

For practice polynomial of high degree would suffice for runtime of attacker algorithm on RAM-machine.

- 4) Why assumptions on computational restrictions, e.g., factoring is difficult? Complexity theory cannot prove any useful lower limits so far. Compact, long studied assumptions!
- 5) What if assumption turns out to be wrong?

a) Make other assumptions.

b) More precise analysis, e.g., fix model of calculation exactly and then examine if polynomial is of high enough degree.

6) Goal of proof: If attacker algorithm can break encryption system, then it can also solve the problem which was assumed to be difficult.

Security classes of cryptographic systems

Combine:

- from asymmetric systems: easy key distribution
- from symmetric systems: efficiency (factor 100 ... 10000, SW and HW)

How?

use asymmetric system to distribute key for symmetric system

Even more efficient: part of *M* in first block

If *B* is supposed also to use *k*: append $s_A(B,k)$

Authentication: k authorized and kept secret

$$\begin{array}{cccc} get \ c_B & & get \ t_A \\ choose \ k & & M, k(M), c_B(B, k, s_A(B, k)) \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

"Any ciphertext S may equally well be any plaintext x"

"Any ciphertext S may equally well be any plaintext x"

Different probability distributions – how do they fit?

Unevenly distributed plaintexts enciphered with equally distributed keys yield equally distributed ciphertexts.

Different probability distributions – how do they fit?

Equally distributed ciphertexts deciphered with equally distributed keys can yield unevenly distributed plaintexts, iff ciphertexts and keys are *not* independently distributed, i.e., the ciphertexts have been calculated using the plaintext and the key. All characters are elements of a group G.

Plaintext, key and ciphertext are character strings.

For the encryption of a character string *x* of length *n*, a randomly generated and secretly exchanged key $k = (k_1, ..., k_n)$ is used.

The *i*th plaintext character x_i is encrypted as $S_i := x_i + k_i$

It can be decrypted with

$$x_i := S_i - k_i.$$

Evaluation: 1. secure against adaptive attacks

- 2. easy to calculate
- 3. but key is very long

- \mathcal{K} is the set of keys,
- X is the set of plaintexts, and
- S is the set of ciphertexts, which appear at least once.
- $|S| \ge |X|$ otherwise it can't be decrypted (fixed *k*)
- $|\mathcal{K}| \ge |\mathcal{S}|$ so that any ciphertext might as well be any plaintext (fixed *x*)
- therefore $|\mathcal{K}| \ge |\mathcal{X}|$.
- If plaintext cleverly coded, it follows that:

The length of the key must be at least the length of the plaintext.

Preparation: Definition for information-theoretical security

How would you define information-theoretical security for encryption?

Write down at least 2 definitions and argue for them!

1. Definition for information-theoretical security

(all keys are chosen with the same probability)

 $\forall S \in S \exists const \in \mathsf{IN} \ \forall x \in X: |\{k \in \mathcal{K} | k(x) = S\}| = const.$ (1)

The a-posteriori probability of the plaintext x is W(x|S), after the attacker got to know the ciphertext S.

2. Definition

$$\forall S \in S \ \forall x \in X: \ W(x|S) = W(x).$$

Both definitions are equivalent (if W(x) > 0):

According to Bayes:

$$W(x \mid S) = \frac{W(x) \bullet W(S \mid x)}{W(S)}$$

Therefore, (2) is equivalent to

$$\forall S \in S \ \forall x \in X: \ W(S|x) = W(S). \tag{3}$$

We show that this is equivalent to

$$\forall S \in S \exists const' \in \mathsf{IR} \ \forall x \in X: \ W(S|x) = const'.$$
(4)

(2)

Proof

(3) \Rightarrow (4) is clear with *const'*:= W(S).

Conversely, we show const' = W(S):

$$W(S) = \sum_{x} W(x) \bullet W(S|x)$$
$$= \sum_{x} W(x) \bullet const'$$
$$= const' \bullet \sum_{x} W(x)$$
$$= const'.$$

(4) is already quite the same as (1): In general holds

 $W(S|x) = W(\{k \mid k(x) = S\}),$

and if all keys have the same probability,

 $W(S|x) = |\{k \mid k(x) = S\}| / |K|.$

Then (4) is equivalent (1) with

 $const = const' \bullet |\mathcal{K}|.$

Another definition for information-theoretical security

Sometimes, students come up with the following definition:

 $\forall S \in S \ \forall x \in X: W(S) = W(S|x).$

This is *not* equivalent, but a slight modification is:

3. Definition

 $\forall S \in S \ \forall x \in X \text{ with } W(x) > 0: W(S) = W(S|x).$

Definitions 2. and 3. are equivalent:

Remember Bayes:

$$W(x \mid S) = \frac{W(x) \cdot W(S \mid x)}{W(S)}$$

$$W(x \mid S) = W(x) \qquad <=> \text{(Bayes)}$$

$$\frac{W(x) \cdot W(S \mid x)}{W(S)} = W(x) \qquad <=> \text{(if } W(x) \neq 0\text{, we can divide by } W(x)\text{)}$$

$$W(S|x) = W(S)$$

W(S|x) as proposed by some students assumes that x may be sent, i.e. W(x)>0.

Key distribution:

like for symmetric encryption systems

Simple example (view of attacker)

The outcome of tossing a coin (Head (H) or Tail (T)) shall be sent in an authenticated fashion:

		x, MAC			
		H,0	H,1	Τ,Ο	T, 1
k	00	н	-	Т	-
	01	н	-	-	Т
	10	-	Н	Т	-
	11	-	Н	-	Т

Security: e.g. attacker wants to send T.

- a) blind: get caught with a probability of 0.5
- b) seeing: e.g. attacker gets H,0 \implies $k \in \{00, 01\}$

still both, T,0 and T,1, have a probability of 0.5

Definition "Information-theoretical security"

with error probability \mathcal{E} :

- $\forall x$, MAC (that attacker can see)
- $\forall y \neq x$ (that attacker sends instead of *x*)
- \forall MAC' (where attacker chooses the one with the highest probability fitting y)

 $W(k(y) = \mathsf{MAC'} \mid k(x) = \mathsf{MAC} \) \leq \mathcal{E}$

(probability that MAC' is correct if one only takes the keys k which are still possible under the constraint of (x,MAC) being correct.)

Improvement of the example:

a) 2σ key bits instead of 2: $k = k_1 k_1^* \dots k_\sigma k_\sigma^*$ MAC = MAC₁,...,MAC_{σ}; MAC_{*i*} calculated using $k_i k_i^*$ \Rightarrow error probability 2^{- σ} b) *l* message bits: $x^{(1)}$, MAC⁽¹⁾ = MAC₁⁽¹⁾, ..., MAC_{σ}⁽¹⁾

 $x^{(l)}$, MAC^(l) = MAC₁^(l), ..., MAC_{σ}^(l)

Symmetric authentication systems (3)

Limits:

```
\sigma-bit-MAC ⇒ error probability ≥ 2<sup>-\sigma</sup> (guess MAC)
```

```
\sigma-bit-key \Rightarrow error probability \ge 2^{-\sigma}
```

```
(guess key, calculate MAC)
```

still clear: for an error probability of $2^{-\sigma}$, a σ -bit-key is too short, because k(x) = MAC eliminates many values of k.

```
Theorem: you need 2o-bit-key
```

(for succeeding messages σ bits suffice, if recipient adequately responds on authentication "errors")

Possible at present: $\approx 4\sigma \cdot \log_2(\text{length}(x))$

(Wegman, Carter)

much shorter as one-time pad

```
Mathematical secrets:
```

```
(to decrypt, to sign ...)
p, q, prime numbers
```

```
Public part of key-pair:
(to encrypt, to test ...)
```

 $n = p \cdot q$

p, *q* big, at present $\approx \mathcal{L} = 500$ up to 2000 bit (theory : $\mathcal{L} \rightarrow \infty$)

```
Often: special property
p \equiv q \equiv 3 \mod 4
```

(the semantics of "≡ ... mod" is: a ≡ b mod c iff c divides a-b, putting it another way: dividing a and b by c leaves the same remainder) application:

*s*²-mod-*n*-generator, GMR and many others, e.g., only well analyzed systems like RSA

(significant alternative: only "discrete logarithm", based on number theory, too, similarly well analyzed)

necessary: 1. factoring is difficult

- 2. to generate p,q is easy
- 3. operations on the message with *n* alone, you can only invert using *p*, *q*

Factoring

clear: in NP \Rightarrow but difficulty cannot be proved yet

complexity at present

$$L(n) = e^{c \cdot \sqrt[3]{\ln(n) \cdot (\ln \ln(n))^2}}, c \approx 1,9$$

$$\approx e^{\sqrt[3]{l}}$$
 "sub-exponential"

practically up to 155 decimal digits in the year 1999 174 decimal digits in the year 2003 200 decimal digits in the year 2005 232 decimal digits in the year 2010 (www.crypto-world.com/FactorRecords.html)

(notice :

B faster algorithms, e.g., for $2^r \pm 1$, but this doesn't matter)

assumption: factoring is hard

(notice : If an attacker could factor, e.g., every 1000th *n*, this would be unacceptable.)

90

- \forall PPA \mathcal{F} (probabilistic polynomial algorithm, which tries to factor)
- \forall polynomials Q

 $\exists L \forall \ell \ge L$: (asymptotically holds:)

If *p*, *q* are random prime numbers of length \mathcal{L} and $n = p \cdot q$:

$$W(\mathcal{F}(n) = (p, q)) \leq \frac{1}{\mathcal{Q}(\mathcal{V})}$$

(probability that \mathcal{F} truly factors decreases faster as $\frac{1}{\text{any polynomial}}$.)

trustworthy ??

the best analyzed assumption of all available

1. Are there enough prime numbers? (important also for factoring assumption)

 $\frac{\pi(x)}{x} \approx \frac{1}{\ln(x)} \qquad \begin{array}{l} \pi(x) \text{ number of the prime numbers } \leq x \\ \text{"prime number theorem"} \end{array}$ $\Rightarrow \text{ up to length } \mathcal{L} \text{ more than every } \mathcal{L}^{\text{th}}.$

And \approx every $2^{nd} \equiv 3 \mod 4$ "Dirichlet's prime number theorem"

2. Principle of search:

repeat

choose random number $p (\equiv 3 \mod 4)$ test whether p is prime until p prime 92

3. Primality tests: (notice: trying to factor is much too slow) probabilistic; "Rabin-Miller" special case $p \equiv 3 \mod 4$: $p \text{ prime} \implies \forall a \neq 0 \mod p : a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$ $p \text{ not prime } \Rightarrow \text{ for } \leq \frac{1}{4} \text{ of } \mathcal{A}'s : \mathcal{A}^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$ \Rightarrow test this for *m* different, independently chosen values of \mathcal{A} , error probability $\leq \frac{1}{\Lambda^m}$ (doesn't matter in general)

 Z_n : ring of residue classes mod $n \stackrel{\circ}{=} \{0, ..., n-1\}$

- +, -, fast
- exponentiation "fast" (square & multiply)

example: $7^{26} = 7^{(11010)_2}$; from left $7^1 \xrightarrow{s} 7^{10}$ $7^{110} \xrightarrow{s} 7^{1100}$ 7^{1100} 7^{1101} 7^{1101}

• gcd (greatest common divisor) fast in Z (Euclidean Algorithm)

$$Z_n^*$$
: multiplicative group
 $a \in Z_n^* \Leftrightarrow \text{gcd}(a,n) = 1$

Inverting is fast (extended Euclidean Algorithm)
 Determine to *a*,*n* the values *u*,*v* with

$$a \cdot u + n \cdot v = 1$$

Then: $u \equiv a^{-1} \mod n$

example: $3^{-1} \mod 11$? = $-11 + 4 \cdot 3$ = $1 + 4 \cdot 3$ = $1 \cdot 3 - 1 \cdot (11 - 3 \cdot 3)$ = $1 \cdot 2 + 1 \longrightarrow 1 = 1 \cdot 3 - 1 \cdot 2$

 $\Rightarrow 3^{-1} \equiv 4 \mod 11$

Number of elements of Z_n^*

The Euler Φ -Function is defined as $\Phi(n) := |\{a \in \{0,...,n-1\} | \text{gcd}(a,n)=1\}|,$ whereby for any integer $n \neq 0$ holds: gcd (0,n)=|n|. It immediately follows from both definitions, that $|Z_n^*| = \Phi(n).$

For $n = p \cdot q$, p,q prime and $p \neq q$ we can easily calculate $\Phi(n)$: $\Phi(n) = (p-1) \cdot (q-1)$

gcd \neq 1 have the numbers 0, then *p*, 2*p*, ..., (*q*-1)*p* and *q*, 2*q*, ..., (*p*-1)*q*, and these 1+(*q*-1)+(*p*-1) = *p*+*q*-1 numbers are for *p* \neq *q* all different.

 \Rightarrow To calculate f(x) mod n, at first you have to calculate mod p, q separately.

 $y_p := f(x) \mod p$ $y_q := f(x) \mod q$ Compose ? extended Euclidean : $u \cdot p + v \cdot q = 1$ $y := (u \cdot p) \cdot y_q + (v \cdot q) \cdot y_p \quad \begin{cases} \equiv y_p \mod p \\ \equiv y_q \mod q \end{cases}$

Since :

squares and roots $QR_n := \{ x \in Z_n^* \mid \exists y \in Z_n^* : y^2 \equiv x \mod n \}$ x : ``quadratic residue'' $y : \text{``root of } x^{''}$ -y is also a root $(-1)^2 = 1$ but attention: e.g. mod 8 $1^2 \equiv 1 \quad 3^2 \equiv 1 \quad \left\{ \begin{array}{c} 4 \\ 7^2 \equiv 1 \quad 5^2 \equiv 1 \end{array} \right\}$ roots

QR_n multiplicative group:

$$x_1, x_2 \in QR_n \implies x_1 \cdot x_2 \in QR_n : (y_1y_2)^2 = y_1^2y_2^2 = x_1x_2$$
$$x_1^{-1} \in QR_n : (y_1^{-1})^2 = (y_1^2)^{-1} = x_1^{-1}$$

squares and roots mod *p*, prime: Z_{p} field \Rightarrow as usual \leq 2 roots $x \neq 0, p \neq 2$: 0 or 2 roots $\Rightarrow |QR_p| = \frac{p-1}{2}$ (square function is $2 \rightarrow 1$)

Jacobi symbol

$$\left[\frac{x}{p}\right] := \begin{cases} 1 & \text{if } x \in QR_p \\ -1 & \text{else} \end{cases}$$

(for $x \in \mathbb{Z}_{p}^{*}$)

100

Continuation squares and roots mod p, prime:

Euler criterion : $\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} \mod p$

(i.e. fast algorithm to test whether square)

Proof using little Theorem of Fermat: $x^{p-1} \equiv 1 \mod p$ co-domain ok : $x^{\frac{p-1}{2}} \in \{\pm 1\}$, because $(x^{\frac{p-1}{2}})^2 \equiv 1$ x square : $\left[\frac{x}{p}\right] = 1 \Rightarrow x^{\frac{p-1}{2}} \equiv (y^2)^{\frac{p-1}{2}} \equiv y^{p-1} \equiv 1$ x nonsquare : The $\frac{p-1}{2}$ solutions of $x^{\frac{p-1}{2}} \equiv 1$ are the squares. So no nonsquare satisfies the equation. Therefore: $x^{\frac{p-1}{2}} \equiv -1$. squares and roots mod $p \equiv 3 \mod 4$ extracting roots is easy: given $x \in QR_p$ $w := x^{\frac{p+1}{4}} \mod p$ is root proof : 1. $p \equiv 3 \mod 4 \Rightarrow \frac{p+1}{4} \in \mathbb{N}$ 2 $w^2 = x^{\frac{p+1}{2}} = x^{\frac{p-1}{2}+1} = x^{\frac{p-1}{2}} \bullet x = 1 \bullet x$ Euler, $x \in QR_p$ In addition: $w \in QR_p$ (power of $x \in QR_p$) \rightarrow extracting roots iteratively is possible

•
$$\left[\frac{-1}{p}\right] \equiv (-1)^{\frac{p-1}{2}}$$
 $\left[\frac{4r+2}{2}\right] = (-1)^{\frac{2r+1}{2}}$ $= -1$
 $p = 4r+3$

⇒ $-1 \notin QR_p$ ⇒ of the roots ± *w*: $-w \notin QR_p$ (otherwise $-1 = (-w) \cdot w^{-1} \in QR_p$) squares and roots mod *n* <u>using</u> *p*,*q* (usable as secret operations)

testing whether square is simple $(n = p \cdot q, p, q \text{ prime}, p \neq q)$ • $x \in QR_n \iff x \in QR_n \land x \in QR_n$ Chinese Remainder Theorem proof: " \Rightarrow " $x \equiv w^2 \mod n \Rightarrow x \equiv w^2 \mod p \land x \equiv w^2 \mod q$ " \Leftarrow " $x \equiv w_p^2 \mod p \land x \equiv w_q^2 \mod q$ $w := CRA(w_{p}, w_{q})$ then $w \equiv w_p \mod p \land w \equiv w_q \mod q$ using the Chinese Remainder Theorem for $W^2 \equiv W_p^2 \equiv x \mod p \land W^2 \equiv W_q^2 \equiv x \mod q$ we have $W^2 \equiv x \mod n$

103

Continuation squares und roots mod *n* using *p*,*q*

- $x \in QR_n \Rightarrow x$ has exactly 4 roots (mod p and mod $q : \pm w_p, \pm w_q$. therefore the 4 combinations according to the Chinese Remainder Theorem)
- extracting a root is easy ($p, q \equiv 3 \mod 4$) determine roots $w_p, w_q \mod p, q$

$$w_p \coloneqq x^{\frac{p+1}{4}} \qquad \qquad w_q \coloneqq x^{\frac{q+1}{4}}$$

combine using CRA

Continuation squares und roots mod *n* using *p*,*q*

Jacobi symbol
$$\left[\frac{x}{n}\right] := \left[\frac{x}{p}\right] \bullet \left[\frac{x}{q}\right]$$

So:
$$\left(\frac{x}{n}\right) = \begin{cases} +1 & \text{if} \\ -1 & \text{if} \end{cases}$$

$$x \in QR_p \land x \in QR_q \lor$$

 $x \notin QR_p \land x \notin QR_q$
"cross-over"

So : $x \in QR_n$

$$\Rightarrow \left[\frac{x}{n}\right] = 1$$

$$\neq \text{ does not hold}$$

continuation squares und roots mod n using p,q

to determine the Jacobi symbol is easy

e.g. $p \equiv q \equiv 3 \mod 4$

$$\left(\frac{-1}{n}\right) = \left(\frac{-1}{p}\right) \cdot \left(\frac{-1}{q}\right) = (-1) \cdot (-1) = 1$$

but $-1 \notin QR_n$, because $\notin QR_{p,q}$

squares and roots mod *n* without *p*,*q*

- extracting roots is difficult: provably so difficult as to factor
 - a) If someone knows 2 significantly different roots of an x mod n, then he can definitely factor n. (i.e. $w_1^2 \equiv w_2^2 \equiv x$, but $w_1 \not\equiv \pm w_2 \Rightarrow n \not\mid (w_1 \pm w_2)$) proof: $n \mid w_1^2 - w_2^2 \Rightarrow n \mid (w_1 + w_2)(w_1 - w_2)$

p in one factor, *q* in the other

 \Rightarrow gcd($w_1 + w_2, n$) is p or q

Continuation squares und roots mod *n* without *p*,*q*

b) Sketch of "factoring is difficult \Rightarrow extracting a root is difficult" proof of "factoring is easy \Leftarrow extracting a root is easy" So assumption : $\exists W \in PPA$: algorithm extracting a root to show : $\exists \mathcal{F} \in PPA$: factoring algorithm

Calculating with and without *p*,*q* (16)

to b) \mathcal{F} : input *n* repeat forever choose $w \in \mathbb{Z}_n^*$ at random, set $x := w^2$ $w' := \mathcal{W}(n,x)$ test whether $w' \neq \pm w$, if so factor according to a) break

• to determine the Jacobi symbol is easy

(if *p* and *q* unknown: use quadratic law of reciprocity)

but note : If $\left[\frac{x}{n}\right] = 1$, determine whether $x \in QR_n$ is difficult

(i.e. it does not work essentially better than to guess)

QRA = quadratic residuosity assumption

Idea: short initial value (seed) \rightarrow long bit sequence (should be random from a polynomial attacker's point of view) **Requirements:**

Scheme:

gen and PBG are efficient

110

- PBG is deterministic
 - $(\Rightarrow$ sequence reproducible)
- secure: no probabilistic polynomial test can distinguish PBG-streams from real random streams

s²-mod-*n*-generator

Method

 key value: 	p,q prime, big, $\equiv 3 \mod n = p \bullet q$	4
initial value (seed):PBG:	$s \in Z_n^*$ $s_0 := s^2 \mod n$	
	$s_{i+1} := s_i^2 \mod n$	$b_i := s_i \mod 2$
	•••	(last bit)
Example: $n = 3 \cdot 11 = 33$, $s = 2$ 16 ² mod 33		
index	0 1 2 3 4	$= 8 \cdot 32 = 8 \cdot (-1) = 25$
S _i :	4 16 25 31 4	$25^2 = (-8)^2 = 64 = 31$
b _i :	4 16 25 31 4 0 0 1 1 0	$31^2 = (-2)^2 = 4$

Note: length of period no problem with big numbers (Blum / Blum / Shub 1983 / 86)

*s*²-mod-*n*-generator as symmetric encryption system

- Purpose: application as symmetric encryption system: "Pseudo one-time pad"
- Compare: one-time pad: add long real random bit stream with plaintext Pseudo one-time pad: add long pseudo-random stream with plaintext

Idea:

If no probabilistic polynomial test can distinguish pseudo-random streams from real random streams, then the pseudo one-time pad is as good as the one-time pad against polynomial attacker.

(Else the attacker <u>is</u> a test !)

Construction works with any good PBG

s²-mod-*n*-generator as asymmetric encryption system

chosen ciphertext-plaintext attack

 $W(b_0 = \mathcal{P}(n, b_1 b_2 \dots b_k) | s \in Z_n^* \text{ random}) < \frac{1}{2} + \frac{1}{\mathcal{U}^t}$

Proof: Contradiction to QRA in 2 steps

Assumption: s^2 -mod-*n*-generator is weak, i.e. there is a predictor \mathcal{P} , which guesses b_0 with ε -advantage given $b_1 \ b_2 \ b_3 \ ...$

Step 1: Transform \mathcal{P} in \mathcal{P}^* , which to a given s_1 of QR_n guesses the last bit of s_0 with ε -advantage.

Given s_1 .

Generate $b_1 b_2 b_3 \dots$ with s^2 -mod-*n*-generator, apply \mathcal{P} to that stream. \mathcal{P} guesses b_0 with ε -advantage. That is exactly the result of \mathcal{P}^* .

Step 2: Construct using \mathcal{P}^* a method \mathcal{R} , that guesses with ε -advantage, whether a given s^* with Jacobi symbol +1 is a square.

Given s^* . Set $s_1 := (s^*)^2$. Apply \mathcal{P}^* to s_1 . \mathcal{P}^* guesses the last bit of s_0 with ε -advantage, where s^* and s_0 are roots of s_1 ; $s_0 \in QR_n$. Therefore $s^* \in QR_n \Leftrightarrow s^* = s_0$ The last bit b^* of s^* and the guessed b_0 of s_0 suffice to guess correctly, because

1) if
$$s^* = s_0$$
, then $b^* = b_0$
2) to show: if $s^* \neq s_0$, then $b^* \neq b_0$
if $s^* \neq s_0$ because of the same Jacobi symbols, it holds
 $s^* \equiv -s_0 \mod n$
therefore $s^* = n - s_0 \mod Z$
n is odd, therefore s^* and s_0 have different last bits

The constructed \mathcal{R} is in contradiction to QRA.

Notes:

- 1) You can take $O(\log(\mathcal{L}))$ in place of 1 bit per squaring.
- There is a more difficult proof that s²-mod-*n*-generator is secure under the factoring assumption.

Requirements for a PBG:

"strongest" requirement: PBG passes *each* probabilistic Test T with polynomial running time.

pass = streams of the PBG cannot be distinguished from real random bit stream with significant probability by any probabilistic test with polynomial running time.

probabilistic test with polynomial running time = probabilistic polynomial-time restricted algorithm that assigns to each input of {0,1}* a real number of the interval [0,1]. (value depends in general on the sequence of the random decisions.)

Let α_m be the average (with respect to an even distribution) value, that T assigns to a random *m*-bit-string.

PBG passes \mathcal{T} iff

For all t > 0, for sufficiently big \mathcal{L} the average (over all initial values of length \mathcal{L}), that \mathcal{T} assigns to the poly(\mathcal{L}) bit stream generated by the PRC is in \mathcal{C} .

poly(\mathcal{V})-bit-stream generated by the PBG, is in $lpha_{\mathsf{poly}(\mathcal{V})}$ ±1/ \mathcal{V}

To this "strongest" requirement, the following 3 are equivalent (but easier to prove):

For each generated finite initial bit string, of which any (the rightmost, leftmost) bit is missing, each

polynomial-time algorithm $\mathcal{P}(\text{predictor})$ can "only guess" the missing bit.

Idea of proof: From each of these 3 requirements follows the "strongest"

easy: construct test from predictor

hard: construct predictor from test

Proof (indirect): Construct predictor \mathcal{P} from the test \mathcal{T} . For a t>0 and infinitely many \mathcal{L} the average (over all initial values of length \mathcal{L}), that \mathcal{T} assigns to the generated poly(\mathcal{L})-bit-string of the PBG is (e.g. above) $\alpha_{\text{poly}(\mathcal{L})} \pm 1/\mathcal{L}^{t}$. Input to \mathcal{T} a bit string of 2 parts: $j+k=\text{poly}(\mathcal{L})$

real random

 $\begin{array}{l} \mathsf{A} = \{r_1 \hdots r_j \ r_{j+1} \ b_1 \hdots b_k\} \text{ are assigned a value closer to } \alpha_{\mathsf{poly}(\mathcal{V})} \\ \mathsf{B} = \{r_1 \hdots r_j \ \underline{b_0 \ b_1 \hdots b_k}\} \text{ are assigned a value more distant to } \alpha_{\mathsf{poly}(\mathcal{V})}, \\ & \quad \mathsf{generated by PBG} \ e.g. \ higher \\ \mathsf{Predictor for bit string } b_1 \hdots b_k \ \mathsf{constructed as follows:} \\ \mathcal{T} \text{ on input } \{r_1 \hdots r_j \ 0 \ b_1 \hdots b_k\} \ \mathsf{estimate } \alpha^0 \\ \mathcal{T} \text{ on input } \{r_1 \hdots r_j \ 1 \ b_1 \hdots b_k\} \ \mathsf{estimate } \alpha^1 \\ \mathsf{Guess } b_0 = 0 \ \mathsf{with probability of } 1/2 + 1/2 \ (\alpha^0 \hdots \alpha^1) \end{array}$

(more precisely: L. Blum, M. Blum, M. Shub: A simple unpredictable Pseudo-Random Number Generator; SIAM J. Comput. 15/2 (May 1986) page 375f)

Summary of PBG and motivation of GMR

Reminder:

*s*²-mod-*n*-generator is secure against passive attackers for arbitrary distributions of messages

reason for arrow: random number' in picture asymmetric encryption systems

→ memorize term: probabilistic encryption

Terms:

one-way function

one-way permutation

one-way = nearly nowhere practically invertible variant: invertible with secret (trap door)

Motivation:

active attack on s²-mod-n-generator as asymmetric encryption system

Seemingly, there are no provably secure cryptosystems against adaptive active attacks.

A constructive security proof seems to be a game with fire.

Why fallacy ?

Alg.1: uniform for any

key

Alg.2: has to demand

uniformity

attacked person

Alg.1: non uniform: only own key

GMR – signature system

Shafi Goldwasser, Silvio Micali, Ronald Rivest:

A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks; SIAM J. Comput. 17/2 (April 1988) 281 – 308

Main ideas

- 1) Map a randomly chosen reference \mathcal{R} , which is only used once.
- 2) Out of a set of collision-resistant permutations (which are invertible using a secret) assign to any message *m* one permutation.

$$\mathcal{R} \xrightarrow{\mathcal{F}_{n,m}^{-1}(\mathcal{R})} \operatorname{Sig}_{m}^{\mathcal{R}}$$

124

Consequence

"variation of m" (active attack) now means also a "variation of \mathcal{R} " – a randomly chosen reference, that is unknown to the attacker when he chooses m.

Problems

- 1) securing the originality of the randomly chosen reference
- 2) construction of the collision-resistant permutations (which are invertible only using the secret) which depend on the messages

Solution of problem 2

- Idea Choose 2 collision-resistant permutations f_0 , f_1 (which are invertible only using the secret) and compose $\mathcal{F}_{n,m}$ by f_0 , f_1 . {for simplicity, we will write f_0 instead of $f_{n,0}$ and f_1 instead of $f_{n,1}$ }
- Def. Two permutations f_0, f_1 are called collision-resistant iff it is difficult to find any x, y, z with $f_0(x) = f_1(y) = z$
- Note Proposition: collision-resistant \Rightarrow one-way Proof (indir.): If f_i isn't one-way: 1) choose x; 2) $f_{1-i}(x) = z$; 3) $f_i^{-1}(z) = y$

Construction:

For
$$m = b_0 b_1 \dots b_k$$
 $(b_0, \dots, b_k \in \{0, 1\})$ let
 $\mathcal{F}_{n,m} := f_{b_0} \circ f_{b_1} \circ \dots \circ f_{b_k}$
 $\mathcal{F}_{n,m}^{-1} := f_{b_k}^{-1} \circ \dots \circ f_{b_1}^{-1} \circ f_{b_0}^{-1}$
Signing: $\mathcal{R} \xrightarrow{f_{b_0}^{-1}} f_{b_0}^{-1}(\mathcal{R}) \xrightarrow{f_{b_1}^{-1}} \dots \xrightarrow{f_{b_k}^{-1}} f_{b_k}^{-1} (\dots (f_{b_0}^{-1}(\mathcal{R}))\dots) =: \text{Sig } \frac{\mathcal{R}}{m}$
Testing: $\text{Sig}_m^{\mathcal{R}} \xrightarrow{f_{b_k}} f_{b_k} (\text{Sig } \frac{\mathcal{R}}{m}) \xrightarrow{f_{b_{k-1}}} \dots \xrightarrow{f_{b_0}} f_{b_0} (\dots (f_{b_k} (\text{Sig } \frac{\mathcal{R}}{m}))\dots) = \mathcal{R}$?

Example:

126

Problem: intermediate results of the tests are valid signatures for the start section of the message *m*

Idea: coding the message prefix free

Def. A mapping <•>: $M \rightarrow M$ is called prefix free iff $\forall m_1, m_2 \in M$: $\forall b \in \{0,1\}^+$: $\langle m_1 \rangle b \neq \langle m_2 \rangle$ $\langle \bullet \rangle$ injective

Example for a prefix free mapping $0 \rightarrow 00$; $1 \rightarrow 11$; end identifier 10

Prefix-free encoding should be efficient to calculate both ways.

To factor is difficult (1)

128

to show : 1) Permutation = one-to-one mapping with co-domain = domain

- 2) To calculate the inverse is easy using p,q
- 3) If there is a fast collision finding algorithm, then there is a fast algorithm to factor.

 $-1 \notin QR_n$

$$x^{2} \equiv_{n} -(2y)^{2}$$
 cannot hold, since $(2y)^{2} \in QR_{n}$.
Therefore $x^{2} \equiv_{n} (2y)^{2} \Rightarrow (x+2y)(x-2y) \equiv_{n} 0$.
Because $\left[\frac{x}{n}\right] = 1$ and $\left[\frac{\pm 2y}{n}\right] = -1$ it follows that
 $x \neq_{n} \pm 2y$

Therefore gcd $(x \pm 2y, n)$ provides a non-trivial factor of *n*, i.e. *p* or *q*.

Solution of problem 1 (1)

- <u>Proposition</u> If the permutation pairs are collision resistant, then the adaptive active attacker can't sign any message with GMR.
- <u>Proof</u> A forged signature leads either to a collision in the tree of references (contradiction) or to an additional legal signature. So the attacker has inverted the collisionresistant permutation. With this ability he could generate collisions (contradiction).

In the proof you dispose the "Oracle" (the attacked person) by showing that the attacker can generate "half" the tree from the bottom or (exclusive) "half" the tree from the top with the same probability distribution as the attacked person.

Lesson:

randomly chosen references each used only once (compare one-time-pad) make adaptive active attacks ineffective

 \rightarrow arrow explained (random number z') in figure signature system

GMR signature system

RSA - asymmetric cryptosystem

R. Rivest, A. Shamir, L. Adleman: A Method for obtaining Digital Signatures and Public-Key Cryptosystems; Communications of the ACM 21/2 (Feb. 1978) 120-126.

Key generation

1) Choose two prime numbers p and q at random as well as stochastically independent, with $|p| \approx |q| = l$, $p \neq q$

2) Calculate
$$n := p \cdot q$$

3) Choose c with
$$3 \le c < (p-1)(q-1)$$
 and $gcd(c, (p-1)(q-1)) = 1$
 $\Phi(n)$

- 4) Calculate *d* using *p*, *q*, *c* as multiplicative inverse of *c* mod $\Phi(n)$ $c \cdot d \equiv 1 \pmod{\Phi(n)}$
- 5) Publish *c* and *n*.

En- / decryption

exponentiation with c respectively d in Z_n

Proposition: $\forall m \in \mathbb{Z}_n$ holds: $(m^c)^d \equiv m^{c \cdot d} \equiv (m^d)^c \equiv m \pmod{n}$

Proof (1)

$$c \cdot d \equiv 1 \pmod{\Phi(n)} \Leftrightarrow$$

$$\exists k \in \mathbb{Z} : c \cdot d - 1 = k \cdot \Phi(n) \Leftrightarrow$$

$$\exists k \in \mathbb{Z} : c \cdot d = k \cdot \Phi(n) + 1$$

Therefore $m^{c \cdot d} \equiv m^{k \cdot \Phi(n) + 1} \pmod{n}$
Using the Theorem of Fermat

$$\forall m \in \mathbb{Z}_n^* : m^{\Phi(n)} \equiv 1 \pmod{n}$$

it follows for all *m* coprime to *p*

$$m^{p-1} \equiv 1 \pmod{p}$$

Because *p*-1 is a factor of $\Phi(n)$, it holds

$$m^{k \cdot \Phi(n) + 1} \equiv_{p} m^{k \cdot (p-1)(q-1) + 1} \equiv_{p} m \cdot (m^{p-1})^{k \cdot (q-1)} \equiv_{p} m$$

Holds, of course, for $m \equiv_p 0$. So we have it for all $m \in Z_p$. Same argumentation for *q* gives

$$m^{k \bullet \Phi(n) + 1} \equiv_q m$$

Because congruence holds relating to p as well as q, according

to the CRA, it holds relating to $p \cdot q = n$.

Therefore, for all $m \in Z_n$

$$m^{c \cdot d} \equiv m^{k \cdot \Phi(n) + 1} \equiv m \pmod{n}$$

Attention: There is (until now ?) no proof RSA is easy to break ⇒ to factor is easy

RSA as asymmetric encryption system

Code message (if necessary in several pieces) as number *m* < *n*

Encryption of *m*: $m^c \mod n$ Decryption of m^c : $(m^c)^d \mod n = m$

RSA as digital signature system

Renaming:	$c \rightarrow t, d \rightarrow s$
Signing of <i>m</i> :	<i>m</i> ^s mod <i>n</i>
Testing of <i>m</i> , <i>m</i> ^s :	$(m^s)^t \mod n = m$?

RSA as asymmetric encryption system: naive

RSA as asymmetric encryption system: example

RSA as digital signature system: naive

Attack on encryption with RSA naive

Attack on digital signature with RSA naive

Attack on digital signature with RSA: alternative presentation

simple version of Davida's attack: (against RSA as signature system)

> 1. Given $Sig_1 = m_1^s$ $Sig_2 = m_2^s$ \Rightarrow $Sig := Sig_1 \cdot Sig_2 = (m_1 \cdot m_2)^s$ New signature generated ! (Passive attack, *m* not selectable.)

2. Active, desired $Sig = m^s$ Choose any m_1 ; $m_2 := m \cdot m_1^{-1}$ Let m_1 , m_2 be signed. Further as mentioned above.

3. Active, more skillful (Moore) {see next transparency}
 "Blinding": choose any r,

$$\xrightarrow{m_2} \underset{sign}{\underset{m_2}{\overset{s}{=}} m \cdot r^t} m_2^s = m^s \cdot r^{t \cdot s} = m^s \cdot r$$

1.) asymmetric encryption system:

Decryption of the chosen message m^{c} Attacker chooses random number $r, \ 0 < r < n$ generates $r^{c} \mod n$; this is uniformly distributed in [1, n-1] lets the attacked person decrypt $r^{c} \cdot m^{c} \equiv:_{n} prod$ Attacked person generates $prod^{d} \mod n$ Attacker knows that $prod^{d} \equiv_{n} (r^{c} \cdot m^{c})^{d} \equiv_{n} r^{c \cdot d} \cdot m^{c \cdot d} \equiv_{n} r \cdot m$ divides $prod^{d}$ by r and thereby gets m. If this doesn't work: Factor n.

2.) digital signature system:

Signing of the chosen message *m*.

Attacker chooses random number *r*, 0 < r < ngenerate $r^t \mod n$; this is uniformly distributed in [1, *n*-1] lets the attacked person sign $r^t \cdot m \equiv :_n prod$

Attacked person generates prod^s mod n

Attacker knows that $prod^s \equiv_n (r^t \cdot m)^s \equiv_n r^{t \cdot s} \cdot m^s \equiv_n r \cdot m^s$ divides $prod^s$ by r and thereby gets m^s .

If this doesn't work: Factor *n*.

Defense against Davida's attacks using a collision-resistant hash function

h(): collision-resistant hash function

1.) asymmetric encryption system

plaintext messages have to fulfill redundancy predicate m, redundancy \Rightarrow test if h(m) = redundancy

2.) digital signature system

Before signing, **h** is applied to the message signature of $m = (h(m))^s \mod n$ test if $h(m) = ((h(m))^s)^t \mod n$

Attention: There is no proof of security (so far?)

RSA as asymmetric encryption system

- globally known -

RSA as digital signature system

collision-resistant hash function *h* - globally known -

148

mod p, q separately:
$$y^d \equiv w$$
once and
for all: $d_p := c^{-1} \mod p - 1$
 $d_q := c^{-1} \mod q - 1$ $\Rightarrow (y^{d_p})^c \equiv y \mod p$
 $\Rightarrow (y^{d_q})^c \equiv y \mod q$ every time:set $w := CRA((y^{d_p}, y^{d_q}))$ proof: $\Rightarrow W^c \equiv \begin{cases} (y^{d_p})^c \equiv y \mod p) \\ (y^{d_q})^c \equiv y \mod q \end{cases}$ $\Rightarrow W^c \equiv y \mod q$ \Rightarrow

So: ≈ Factor 4

irrelevant

Shown : each $y \in Z_n$ has c^{th} root \Rightarrow Function $w \rightarrow w^c$ surjective \Rightarrow As well injective.

Symmetric Cryptosystem DES

Why does decryption work?

Encryption function f

- Substitution-permutation networks
- Confusion diffusion

Generation of a key for each of the 16 rounds

The complementation property of DES

$DES(\overline{k}, \overline{x}) = \overline{DES(k, x)}$

Encryption function f

158

- 1.) 56 \Rightarrow 16 48 = 768 key bits
- 2.) variable substitution boxes
- 3.) variable permutations
- 4.) variable expansion permutation
- 5.) variable number of rounds

Stream cipher

synchronous self synchronizing

Block cipher Modes of operation: Simplest: ECB (electronic codebook) each block separately But: concealment: block patterns identifiable authentication: blocks permutable

Main problem of ECB

Telefax example (\rightarrow compression is helpful)

Cipher Block Chaining (CBC)

useable for authentication \Rightarrow use last block as MAC

164

ciphertext block (length *b*-1)

Cipher FeedBack (CFB)

- b Block length
- a Length of the output unit, $a \le b$
- *r* Length of the feedback unit, $r \le b$
- ⊕ Addition mod appropriately chosen modulus
- ⊖ Subtraction mod appropriately chosen modulus

Cipher FeedBack (CFB) (2)

- b Block length
- a Length of the output unit, $a \le b$
- *r* Length of the feedback unit, $r \le b$
- ⊕ Addition mod appropriately chosen modulus
- Θ Subtraction mod appropriately chosen modulus

CFB for authentication

Output FeedBack (OFB)

Plain Cipher Block Chaining (PCBC)

Output Cipher FeedBack (OCFB)

Properties of the operation modes

	ECB	CBC	PCBC	CFB	OFB	OCFB
Utilization of indeterministic block cipher	+ possible			- impossible		
Use of an asymmetric block cipher results in	+ asymmetric stream cipher			- symmetric stream cipher		
Length of the units of encryption	- determined by block length of the block cipher			+ user-defined		
Error extension	only within the block (assuming the borders of blocks are preserved)	2 blocks (assuming the borders of blocks are preserved)	potentially unlimited	1 + [<i>b</i> / <i>r</i>] blocks, if error placed rightmost, else possibly one block less	none as long as no bits are lost or added	potentially unlimited
Qualified also for authentication?	yes, if redundancy within every block	yes, if deterministic block cipher	yes, even concealment in the same pass	yes, if deterministic block cipher	yes, if adequate redundancy	yes, even concealment in the same pass

Collision-resistant hash function using determ. block cipher

efficient !

any nearly

practically important:patent exhausted before that of RSA→ used in PGP from Version 5 ontheoretically important:steganography using public keys

based on difficulty to calculate **discrete logarithms**

Given a prime number p and g a generator of Z_{p}^{*}

 $g^x = h \mod p$

x is the **discrete logarithm** of **h** to basis **g** modulo **p**:

 $\boldsymbol{x} = \log_{\boldsymbol{g}}(\boldsymbol{h}) \mod \boldsymbol{p}$

discrete logarithm assumption

 $\forall \mathsf{PPA} \ \mathcal{DL}$ (probabilistic polynomial algorithm, which tries to calculate discrete logarithms) ∀ polynomials Q $\exists L \forall \mathcal{L} \geq L$: (asymptotically holds) If p is a random prime of length \mathcal{L} thereafter g is chosen randomly within the generators of Z_{p}^{*} x is chosen randomly in Z_{p}^{*} and $g^x = h \mod p$ $\mathcal{W}(\mathcal{DL}(p,g,h)=x) \leq \frac{1}{\mathcal{Q}(\lambda)}$ (probability that $\mathcal{D}\mathcal{L}$ really calculates the discrete logarithm, decreases faster than $\frac{1}{any polynomial}$)

trustworthy ??

practically as well analyzed as the assumption factoring is hard

Diffie-Hellman key agreement (2)

177

Diffie-Hellman (DH) assumption: Given p, g, $g^x \mod p$ and $g^y \mod p$ Calculating $g^{xy} \mod p$ is difficult.

DH assumption is stronger than the discrete logarithm assumption

- Able to calculate discrete Logs ⇒ DH is broken.
 Calculate from *p*, *g*, *g^x* mod *p* and *g^y* mod *p* either
 x or *y*. Calculate *g^{xy}* mod *p* as the corresponding partner of the DH key agreement.
- Until now it couldn't be shown:
 Using p, g, g^x mod p, g^y mod p and g^{xy} mod p
 either x or y can be calculated.

Find a generator of a cyclic group Z_{p}^{*}

Factor $p-1 =: p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}$

1. Choose a random element g in Z_{p}^{*}

2. For *i* from 1 to *k*:

$$p-1$$

$$b := g^{p_i} \mod p$$
If *b*=1 go to 1.

Security is asymmetric, too

usually: unconditionally secure for recipient only cryptographically secure for signer

new: signer is absolutely secure against breaking his signatures provable only cryptographically secure for recipient

Fail-stop signature system

Undeniable signatures

Signature system for blindly providing of signatures

Threshold scheme:

Secret S

- *n* parts
- *k* parts: efficient reconstruction of *S*
- *k*-1 parts: no information about S

Implementation: polynomial interpolation (Shamir, 1979)

Decomposition of the secret:

Let secret *S* be an element of Z_p , *p* being a prime number. Polynomial q(x) of degree *k*-1: Choose $a_1, a_2, ..., a_{k-1}$ randomly in Z_p $q(x) := S + a_1x + a_2x^2 + ... + a_{k-1}x^{k-1}$ *n* parts (*i*, *q*(*i*)) with $1 \le i \le n$, where n < p. Reconstruction of the secret:

k parts
$$(x_j, q(x_j))$$
 $(j = 1 ... k)$:

$$q(x) = \sum_{j=1}^{k} q(x_j) \prod_{m=1, m \neq j} \frac{(x - x_m)}{(x_j - x_m)} \mod p$$

The secret S is q(0).

Sketch of proof:

- 1. *k*-1 parts (*j*, *q*(*j*)) deliver no information about *S*, because for each value of *S* there is still exactly one polynomial of degree *k*-1.
- 2. correct degree *k*-1; delivers for any argument x_j the value $q(x_j)$ (because product delivers on insertion of x_j for *x* the value 1 and on insertion of all other x_j for *x* the value 0).

Polynomial interpolation is Homomorphism w.r.t. +

Addition of the parts \Rightarrow Addition of the secrets

Share refreshing

- 1.) Choose random polynomial q° for $S^{\circ} = 0$
- 2.) Distribute the *n* parts $(i, q^{(i)})$
- 3.) Everyone adds his "new" part to his "old" part
 - \rightarrow "new" random polynomial q+q' with "old" secret S
- Repeat this, so that anyone chooses the random polynomial once
- Use *verifiable secret sharing*, so that anyone can test that polynomials are generated correctly.

Observability of users in switched networks

Observability of users in switched networks

Observability of users in switched networks

Observability of users in broadcast networks

Since about 1990 reality Video-8 tape 5 Gbyte = 3 * all census data of 1987 in Germany memory costs < 25 EUR

100 Video-8 tapes (or in 2003: 2 hard drive disks each with 250 G-Byte for < 280 EUR each) store all telephone calls of one year: Who with whom ? When ? How long ?

From where ?

With the development of television, and the technical advance which made it possible to receive and transmit simultaneously on the same instrument, private life came to an end.

George Orwell, 1948

Unsolved problems by dedicated design of separate exchange:

- + encryption:
- message contents
- connection data, if speaker identification
 or ⊂ message contents
- Trojan horse vs. add-on equipment: see below

 Interception of participant's terminal line (to scramble the signals is expensive and ineffective, encryption of the analogue signals is not possible):

- message contents (content of calls)
- connection data
 - number of the callee
 - speaker identification or \subset message contents

Protection outside the network

- **Public terminals**
- use is cumbersome
- Temporally decoupled processing
- communications with real time properties
- Local selection
- transmission performance of the network
- paying for services with fees

Protection inside the network

Questions:

- How widely distributed ? (stations, lines)
- observing / modifying ?
- How much computing capacity ? (computationally unrestricted, computationally restricted)

Unobservability of an event E For attacker holds for all his observations B: 0 < P(E|B) < 1 perfect: P(E) = P(E|B)

Anonymity of an entity

Unlinkability of events

if necessary: partitioning in classes