
Confidentiality-Preserving Refinement is Compositional
— Sometimes

Thomas Santen1, Maritta Heisel2, and Andreas Pfitzmann3

1 Institut für Softwaretechnik und Theoretische Informatik
Technische Universit¨at Berlin, Germany

email:santen@acm.org
2 Institut für Praktische Informatik und Medieninformatik

Technische Universit¨at Ilmenau, Germany
email:maritta.heisel@prakinf.tu-ilmenau.de

3 Fakultät Informatik, Technische Universit¨at Dresden, Germany
email:pfitza@inf.tu-dresden.de

Abstract. Confidentiality-preserving refinement describes a relation between a
specification and an implementation that ensures that all confidentiality properties
required in the specification are preserved by the implementation in a probabilis-
tic setting. The present paper investigates the condition under which that notion
of refinement iscompositional, i.e. the condition under which refining a subsys-
tem of a larger system yields a confidentiality-preserving refinement of the larger
system. It turns out that the refinement relation is not composition in general,
but the condition for compositionality can be stated in a way that builds on the
analysis of subsystems thus aiding system designers in analyzing a composition.

1 Introduction

In systems and software engineering, the consent is growing that secure systems can-
not be built by adding security featuresex postto an existing implementation but that
“security-aware” engineering of systems and software must take security concerns into
account, starting from requirements engineering through architectural and detailed de-
sign to coding, testing, and deployment.

It is obvious that only some kind of divide-and-conquer approach makes building
non-trivial systems feasible. Such an approach must support decomposing a system into
subsystems, implementing those subsystems largely independently of each other, and
finally composing the implementations of those subsystems to make up an implemen-
tation of the entire system. More specifically, such an approach decomposes a system
specificationinto specifications of subsystems, and it composes (correct)implemen-
tationsof subsystem specifications to yield a (correct) implementation of the system
specification.

In this setting, the question arises whether correctness of the subsystem implemen-
tations with respect to their specifications is sufficient to guarantee that composing the
subsystem implementations yields a correct implementation of the original specifica-
tion. If this is true, then the implementation relation relating a specification to the set of
its correct implementations is calledcompositional. Adapting this definition to security,

the question arises whether security-property-preserving implementations of the sub-
systems with respect to their specifications are sufficient to guarantee that composing
the subsystem implementations yields a security-property-preserving implementation
of the original specification of the whole system.

When formal techniques are used for system development, both the specification
and the implementation are often described in the same formalism. Then, the former is
called theabstractspecification, and the latter is called theconcretespecification. The
relation describing the correct implementations of an abstract specification is called a
refinementrelation, and a concrete specification implementing an abstract one is called
a refinement of the abstract specification. For a notion of refinement, the properties
of transitivity and compositionality are very important. Without these properties, the
practical application of refinement is hardly possible.

In earlier work [4], we have motivated a probabilistic notion of a confidentiality-
preserving refinement and sketched its formalization using an extension of CSP with
probabilistic choice. Classical formal techniques, which are possibilistic, either impose
sufficient conditions that are too strong or impose only necessary conditions that are too
weak to realize required confidentiality properties [16].

In the present paper, we further investigate properties of confidentiality-preserving
refinement, with the goal of enhancing its potential for practical applicability. For these
investigations, we represent our systems using a probabilistic variant of CSP, and slightly
rephrase our definition to better capture the intuition motivated in [4]. We prove that the
resulting refinement relation istransitive. By way of a counterexample, we show that
confidentiality-preserving refinement, in general, isnot compositional. The main con-
tribution of the paper is a necessary and sufficient condition for compositionality of
confidentiality-preserving refinement, callednon-disclosure.

A technical report [14] contains more explanatory prose and the complete proofs of
all theorems and lemmas mentioned in the paper.

2 Probabilistic CSP and Behavioral Refinement

We use a probabilistic extension of the process algebra of “Communicating Sequen-
tial Processes” (CSP) to formally describe the systems we reason about. Roscoe [12]
comprehensively treats classical CSP. In this section, we briefly introduce the notation
and the notion of behavioral refinement on which we build confidentiality-preserving
refinement in Section 3.

2.1 CSP Notation

A process Pproduces sequences ofevents, called traces. An eventc:d consists of a
channel namec and a data itemd. Two processes cansynchronizeon a channelc by
transmitting the same datad overc. If one process generates an eventc:d and the other
generates an eventc:x, wherex is a variable, both processes exchange data when syn-
chronizing on channelc: the value ofx becomesd.

In the following, we describe the CSP notation used in this paper. In the following,
P andQ are processes,e 2 � is an event,X � � is a set of events,S2 � $ � is a
relation on events, andR2 D $ D is a relation on data.

The processe ! P first generates evente, and behaves likeP afterwards. The
processP j[X]jQ is a parallel composition ofP andQ: if P or Q generate events on
channels not inX, then those events appear in an arbitrary order; if a process generates
an event on a channel inX, it waits until the other process also generates an event on
the same channel; if the data transmitted by both processes are equal (or can be made
equal because an event contains a variable), then the parallel composition generates that
event, otherwise the parallel composition deadlocks.

In the notion of refinement we use, we are interested in changing data represen-
tations (data refinement), because many effects compromising confidentiality can be
described by distinguishing data representations in an implementation that represent
the same abstract data item (e.g., different representations of the same natural number).
For a relationR on D, the processP[[R]]D is the processP where each data itema in
events ofP is replaced by a data itemb that is in relation witha, i.e.a R bholds.

The processP n X is distinguished fromP by hidingthe channels inX � �P, where
�P is the set of channels used byP. The traces ofP n X are the traces ofP where all
events over channels inX are removed. The external choiceP 2 Q is the process that
behaves as eitherP or Q, depending on the event that the environment offers.

For a family of processesP(x), the processuP(x) nondeterministically behaves
like one of theP(x). As an extension to classical CSP, we also need aprobabilistic
choice

LP

x P(x): this process choosesx – and thusP(x) – according to a probability
distributionP .

For behavioral refinements, we disregard distributions on choices and treat all prob-
abilistic choices as nondeterministic ones: the possibilistic versionbP of a processP is
defined by replacing each occurrence of the probabilistic choice

L
by a corresponding

nondeterministic choiceu.

2.2 Refinement of Behavior and Data

There are several notions of refinement for CSP: trace refinement, failure refinement,
and failure-divergence refinement. The latter two imply trace refinement. IfP is refined
by Q, denotedP v Q, then – regardless of the refinement relation used –traces(Q) �
traces(P).

We wish to cover changes of data representations in our refinement relation. There-
fore, we extend the usual CSP refinement with aretrieve relationmapping concrete to
abstract data, and definebehavioral refinementas a combination of CSP refinement and
data renaming according to the retrieve relation.

Definition 1 (Retrieve Relation).Let P and Q be processes over�. A relation R2
D $ D between concrete and abstract data is called aretrieve relationfrom Q to P, if
domR� dataQ andranR� dataP, wheredomR andranR denote the domain and
range, respectively, of relation R, anddataP is the set of data occuring in events of P.

At some places we need the setR�1(r) of all possible data refined versions of a
tracer. Applying R�1 to a tracer means applying the inverse ofR to the data in each
event of the trace, andR�1(r) denotes the set of all such traces:

R�1(r) = ft j dom t = dom r ^

8 i 2 dom r; c 2 Ch; d 2 D � 9 d0 2 R(d) � t(i) = c:d) r(i) = c:d0g

Definition 2 (Behavioral Refinement).Let P and Q be processes over�. Let R be a
retrieve relation from Q to P. Then QrefinesP via R (written PvR Q), if bP v bQ[[R]]D,
wherev is the usual refinement of CSP.

Behavioral refinement is transitive and monotonic [14].
We will need to consider a restriction of a “concrete” processQ to a behavior im-

plementing a given “abstract” tracer.

Definition 3. Let Q be a process, R be a retrieve relation abstracting the data in Q, and
let r be a trace over the range of R. Then QjRr is a process that chooses a behavior of Q
whose starting sequence is compatible with r.

QjRr := Pr(r)[[R�1]]D j[�Q]jQ

The processPr(r) produces the trace r and behaves arbitrarily afterwards:

Pr(h i) = Pr(hXi) = RUN Pr(heia s) = e! Pr(s)

The eventX at the end of a trace signifies termination of the process. The process
RUN engages in any communication the environment proposes.

Behavioral refinement is defined in terms of the possibilistic versions of the in-
volved processes. Morgan et.al. [11] define a refinement relation for probabilistic pro-
cesses, which turns out to be a very delicate task when allowing both, nondeterministic
and probabilistic choices.1 Because confidentiality-preserving refinement as defined in
Section 3 imposes a condition on processes that, in particular, does not require the prob-
abilistic behavior of a process to be preserved in a refinement, we do not use Morgan,
et.al.’s definition2 of refinement.

2.3 Probability Distributions on Processes

We conclude the brief discourse on probabilistic CSP with some properties of probabil-
ity distributions, which we will need later. Given a processP, which may contain exter-
nal, nondeterministic, and probabilistic choices, the set of processesProb(P) contains
all processes that are obtained by replacing each external choice and each nondetermin-
istic choice inP by a probabilistic choice for some (arbitrary) distribution.

When we will consider probabilistic properties of processes later, we will argue
about all membersProb(P) for a givenP, because thus we consider all possible prob-
abilistic behavior of the environment (external choices) and all possible probabilistic
behavior of an implemented system for which the process (as a specification) does not
determine the distribution (nondeterministic choices).

For a processQ that contains only probabilistic choices, we define a family of prob-
ability distributionsPn(Q; t) that is indexed by the maximal lengthn of traces it consid-
ers:Pn(Q; t) is a distribution on the set of traces with lengthn or that terminate (the last

1 It is not easy to avoid either one when defining processes.
2 An investigation of the relation between the two is nevertheless theoretically interesting.

21 llinp

w

ANet AReceiver outASender

ASystem

==a
w

==c
w

==c
w

abstract

concrete

R

0.6 0.6

r

0.4

s

u

t’

t

v

w

0.4

y

Fig. 1.System model (left), and concretization vs. indistinguishability (right)

event isX) and have a length less thann. For a givent, we writePQ(t) for P#t(Q; t),
where#t is the length oft.

The probability ofQ producing a trace in a setM, which describes a certain property
of Q, is given by

PQ(t 2 M) =
X

t2pfree(M)

PQ(t) (1)

The setpfree(M) � M is the maximal subset ofM that does not contain anyt 2 M for
which there is a prefixt0 of t in M.

Finally, we definePQ(s) = 0 for tracess =2 traces(Q).

3 Confidentiality-Preserving Refinement (CPR)

In this section, we present our definition of confidentiality-preserving refinement, which
we have extensively motivated in an earlier publication [4]. To specify confidentiality
properties we use a system model illustrated on the left-hand side of Fig. 1 for the
example of a communication system between a sender and a receiver communicating
over an untrusted network. We specify a system for which confidentiality is a relevant
requirement by a pair of a process and a window channel.

Definition 4 (System, Window).A system specificationA = (Q;w) is a pair of a
process definition Q and a distinguished channel w2 �Q, called thewindowof A.

Specifying the systemASystemof Fig. 1, we define three processesASender, ANet,
and AReceiver, whereASenderand ANet communicate via the internal channell1,
andANetandAReceivercommunicate over the internal channell2. Then, the process
ASystemis the parallel composition of those three processes. The windoww is a distin-
guished channel ofASystem.

ASystem= (QA;w)

QA b= ((ASenderj[l1]jANet) j[l2]jAReceiver) n fl1; l2g

�QA = finp; out;wg

The channelw models the flow of data from the system to an adversary. Observing
the channelw, the adversary gains information about the system. Any distinction the
adversary can make about the internal state of the system based on the observations
on w is information that the system does not keep confidential. Conversely, the system
keeps confidential any aspect of its behavior that an adversary cannot distinguish by
observingw. We formally capture that confidentiality property by defining equivalences
over system traces.

Definition 5 (Indistinguishability). Let A = (Q;w) be a system specification. Two
traces s; t 2 traces(Q) are indistinguishable byw (denoted s�w t) iff their projections
to w are equal: s�w t , s � fwg = t � fwg

In the transition from an abstract to a concrete system specification, the interpreta-
tion of a window changes. The window of anabstractsystem specifies what information
is allowedto be visible to an adversary. The window of aconcretesystem specifies what
informationcannotbe hidden from the adversary.

Here, a purely logical argument is insufficient because it is not enough to ask
whether a distinction in the concrete systemdefinitelyallows an observer to distin-
guish confidential data, but we must describe whether such a distinction providesmore
information about the confidential data than the abstract window reveals. Therefore, we
consider the respective probabilities of internal data that may cause a particular observ-
able behavior on a window. The right-hand side of Fig. 1 illustrates our approach to
formalizing that probabilistic argument:

Consider an abstract and a concrete system that behaviorally refines the abstract one
with retrieve relationR. Let r andsbe two abstract traces that are indistinguishable with
respect to the windoww, i.e. r �a

w s. According to the retrieve relationR, tracer can be
represented by the concrete tracesu andw, and traces can be represented by the con-
crete tracesv andy, whereu andy as well asv andw are indistinguishable by observing
the concrete window, i.e.u �c

w y andw �c
w v. For keepingr ands indistinguishable

in the concrete system, we must require that the probability thatr is represented byu
be the same as the probability thats is represented byy. If this were not the case, an
adversary might be able to gain information whetherr or s happened on the abstract
layer: if the probability thatr is represented byu is greater than the probability thats
is represented byy, for an adversary, the observation of some elementt �c

w y increases
the probability ofr with respect tos.

Definition 6 reflects this argument: A confidentiality-preserving refinement is one
that (1) is the behavioral refinement of the processes describing a system (c.f. Definition
2), and that (2) (probabilistically) preserves the indistinguishability of system traces. In
the latter condition, we consider the behavior of the concrete system implementing an
abstract tracer, i.e. the processQjRr . This process may contain external choices stem-
ming from the different implementation choices thatR�1 assigns to the data inr. Be-
cause there is no way of knowing with what probability those implementation choices
are resolved, we need to consider all possible distributions that makeQjRr a probabilistic
process, i.e. all members ofProb(QjRr).

Remark 1.To keep the language simple, we will talk about a probabilistic propertyE
of a processQ, when we mean that all membersQp 2 Prob(Q) satisfyE.

Definition 6 (Confidentiality-Preserving Refinement, CPR).Let A = (P;w) and
C = (Q;w) be two system specifications. Let�a

w be the indistinguishability in A (wrt.
w), and let�c

w be the indistinguishability in C (wrt. w). The system C is aconfidentiality-
preserving refinement (CPR)of the system A via the retrieve relation R from Q to P
(Avcpr

R C) iff:

1. Pn fwg vR Q n fwg, and behavioral refinement, BR
2. 8 r; s2 traces(P); t 2 traces(Q);

Qr 2 Prob(QjRr); Qs 2 Prob(QjRs) �

r �a
w s) PQr (u�

c
w t) = PQs(v�

c
w t)

indistinguishability preservation, IP

We write P vcpr
R;w Q for (P;w) vcpr

R (Q;w), which is useful when analyzing sys-
tems with respect to different windows. Although the windows of the two systems have
the same namew, they may carry different data because the processes of the systems
determine the data that is transmitted on a channel.

Hiding w from P andQ in ConditionBR, Definition 6 does not requireQ to refine
the windoww: At the implementation level, an adversary may have means of observa-
tion that are in no way related to the means of observation given at the specification
level. RequiringQ to refine the windoww therefore would – inadequately – allow the
specification to impose restrictions on the power of an adversary at the level of imple-
mentation. ConditionIP captures the important restriction on confidentiality-preserving
implementations that adversaries must not be able to infer more information by observ-
ing the implementation than the window at the specification level allows them to. It
states that, given two indistinguishable abstract tracesr and s, and a concrete trace
t, the probability of choosing a concrete traceu which is indistinguishable oft as an
implementation ofr must be the same as choosing a concrete tracev which is indistin-
guishable oft as an implementation ofs, see Fig. 1.

To determine the probabilityPQr (u �
c
w t), we consider a subset of the setT = fu j

u 2 traces(Qr) ^ u �c
w tg of all traces that are indistinguishable fromt. BecauseT

need not be prefix-free, we must consider the setpfree(T) for calculating probabilities.
Then, it holds:

PQr (u�
c
w t) =

P
u2pfree(T) PQr (u)

To support stepwise refinement and the independent refinement of subsystems, a
refinement relation must have two properties: it must be transitive and compositional.
The following Theorem 1 establishes the transitivity of CPR. Section 4 extensively
discusses compositionality.

Theorem 1 (Transitivity of CPR). Let A= (Pa;w), B = (Pb;w), and C= (Pc;w) be
system specifications. Let Rba and Rcb be retrieve relations from Pb to Pa, and from Pc
to Pb, respectively. Then Avcpr

Rba
B ^ Bvcpr

Rcb
C) Avcpr

Rcb
o
9Rba

C, whereo9 is the forward
composition of relations.

4 Compositionality of CPR

Compositionality of security properties and compositionality of refinement are two dif-
ferent notions. Section 4.1 contrasts the two. Indistinguishability is not a compositional
property, and CPR is, in general, not compositional. Section 4.2 illustrates this fact by
way of a counterexample. For a composed system for which refinements of subsystems
are known, we can find a condition that characterizes the circumstances under which a
CPR is compositional. This condition is more intuitive than the ConditionIP of Def-
inition 6, and it allows one to build on the analyses made for verifying the CPR of
subsystems. Section 4.3 establishes this result in Theorem 2.

4.1 Compositionality of Security Properties vs. Compositionality of Refinement

Compositionality of a security property, as it is often considered in the context of secure
systems, means the preservation of that property under composition of systems: if cer-
tain systems satisfy a certain security property, some variant of non-interference, say,
then the composition of those systems satisfies the same property. Mantel [10] investi-
gates the relation between compositionality results for many known information flow
properties.

Compositionality of a refinement relation, in which we are interested in this pa-
per, addresses the interplay of decomposing a system specification, and composing the
implementations of the subsystems to yield an implementation of the original system
specification. Thus it is a preservation property that relates different levels of abstraction
(specification – implementation), whereas the compositionality of security properties
is concerned with one level of abstraction only. As we will see in the following sec-
tion, the security property indistinguishability (c.f. Definition 5) is not compositional.
Since this is true for the abstract as well as the concrete level of a refinement, the non-
compositionality of indistinguishability, in principle,weakensthe requirements for a
refinement to be compositional. As a consequence, embedding a system into a context
but refining it in isolation leads to two questions to be answered:

1. Does the composed system still fulfill the desired security requirements?
2. Does the replacement of the abstract by the concrete system in the given context

compromise security?

Question 1 means that thecompositionhas to be considered and possibly be re-
jected, independently of later refinements. The present paper does not address this prob-
lem. Since the usual notion of correctness of refinement does provide for preservation of
integrity and hopefully availability, but not at all for confidentiality, we narrow Question
2 to: Does the replacement of the abstract by the concrete system in the given context
compromise confidentiality? This amounts to showing that the refinement is composi-
tional for the given context. In the rest of the paper, we will show how to answer this
question.

w wx

C

w wx

inp

w = cipher(inp,k)

CSys

Con

wx = k

out
inp A

w = length(inp)

ASys

Con

wx

out

⊗ ⊗

com = inp

aux = k
k

com = inp

aux = 0

Fig. 2.Confidentiality-preserving refinement is not compositional

4.2 A Counterexample

The two systems shown in Fig. 2 illustrate that, in general, CPR isnot compositional.
The left-hand side of the figure shows an abstract systemASyswith two communica-
tion channelsinp andout, and a windoww
 wx that is a combination of the windows
w andwx of the two subsystemsA andCon: all data observable onw or wx are also
observable onw
 wx. The subsystemA specifies a secure communication service. It
allows its environment to observe the length of messages transmitted from channelinp
to channelcom, but no other information about the content of messages. The subsystem
Conspecifies the context in whichA operates. The contextConcopies the data thatA
produces oncomto its output channelout. The systemsA andConalso communicate
via the channelaux: Conreceives data fromA that do not contain any relevant informa-
tion (represented by a constant0). The windowwx of Conallows data received onaux
to be observed by the environment.

The right-hand side of Fig. 2 shows an implementationCSysof ASys. The subsystem
C is an implementation of the communication service thatA specifies in the presence of
an untrusted network. The implementationC probabilistically chooses keysk with equal
probabilities and uses a (suitable) encryption functioncipherto conceal the transmitted
data from an observer who can intercept communication on the network: the windoww
of C allows an adversary to observe the ciphertextcipher(inp; k).

Because observing that ciphertext will reveal the length of the message but nothing
else about its content, the systemC is a CPR of the systemA, as shown in [4]. If CPR
was unconditionally compositional, we would expectCSys, which is obtained from
ASysby substitutingC for A, to be a CPR ofASys. This, however, is not true:C not
only implementsA correctly3, but it also transmits the selected keyk over the channel
aux. This does not compromise confidentiality ifC is considered in isolation, becausew
does not make information about the data onauxavailable to the adversary. Composing
C with Conas inCSys, however, allows the adversary to observe the keyk on thenew
window wx! Thus, the combination of the information gained by observingw andwx
reveals the original input message to an adversary, which is not revealed on the abstract
level.

3 The retrieve relation maps each key transmitted on channelaux to the constant0, which is an
admissible data refinement.

In this example, the non-compositionality of CPR is a direct consequence of the
non-compositionality of indistinguishability: composing the windowsw andwx in CSys
makesmoreobservations possible (the key becomes observable) and thus an observer
can distinguish more behavior of the subsystems than by observing their respective
windows alone.

The same argument, however, is also true for the abstract level: the indistinguisha-
bility requirementon the implementation will, in general, become weaker by combining
windows, thus strengthening the premise of ConditionIP in Definition 6, and allowing
for moreconfidentiality-preserving refinements. Additionally, much more subtle effects
relating to the probabilistic nature of Definition 6 may compromise the compositionality
of CPR.

4.3 A Condition for Compositionality

After the somewhat discouraging result of the previous section, we will now investigate
the conditions under which CPR is nevertheless compositional. We will make precise
the intuition gained from analyzing the counterexample, and come up with a condition
for compositionality that reduces the question of compositionality to the question what
additionaldistinctions a new window on the subsystem allows an adversary to make.

Formally, we consider two systemsA = (P;w) andC = (Q;w) with A vcpr
R C for

some retrieve relationR from Q to P. The contextCon = (Cx;wx) is another system
that can communicate withA andC via a set of channelsK. The context window is
different4 from the window onA andC: wx 6= w.

Combining the systemA with the contextConyields the system(P j[K]jCx;w
wx).
We assume here that the processesP andCx work on the same set of abstract data.
Therefore, to combineC with Con, we must “concretize” the data inCx by a data
renaming consistent with the retrieve relation fromQ to P: (Q j[K]jCx[[R�1]]D;w
wx).
Viewed abstractly, the processCx[[R�1]]D has the same behavior asCx, but for each data
itema thatCx transmits, the processCx[[R�1]]D transmits a data itemb that implements
a, i.e. for whichb R aholds. In this setting, compositionality means thatC combined
with ConrefinesA combined withCon:

(P j[K]jCx;w
 wx) vcpr
R (Q j[K]jCx[[R�1]]D;w
 wx) (2)

If Condition IP of Definition 6 does not hold for (2), then the additional observa-
tions of the concrete system that the windowwx permits via the context must allow an
adversary to distinguish more behavior ofP than the windoww permits. Composing
the context with the processesP or Q, respectively, forces them to synchronize with the
context and thus reduces their possible behavior. This may change the probabilities of
traces ofP andQ, which might also affect ConditionIP.

This analysis motivates the three essential tasks to solve for stating our composi-
tionality theorem:

1. to reduce the combination of a system with a context, which itself has an additional
window, to adding a window to the system;

4 Although the channel names are different, the same data can, of course, be transmitted over
those channels.

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

==w

==wx

==wx

==w

s

w

y

u

R

abstract

concrete

x

r

Fig. 3. Non-Disclosure

2. to come up with a condition describing the circumstances under which a CPR be-
tween two systems is preserved under addition of a window to both systems;

3. to show that reducing behavior by adding a context preserves CPR.

To solve the first task, we wish to consider the context as a means of an adversary
to observe the behavior ofP or Q at the channelsK. Technically, we can achieve this
by hiding all channels ofCx but wx and but the ones inK from the composed systems.
This leads to the notion of a system in context:

Definition 7 (System in Context).Let A = (P;w) and Con= (Cx;wx) be system
specifications. Let K� (�P\ �Cx)�fw;wxg be a set of channels over which A and
Con can communicate, and let X:= �Cx�(�P [fwxg). Then Ain contextCon,

written A
K
^ Con, is the system(P j[K]j (Cx n X);w
 wx).

The systemA
K
^Con is the systemA with an additional windowwx and the reduced

behavior that is a consequence of synchronizing withCon. Similarly, at the concrete

level, the systemC
K
^Con[[R�1]]D is the systemC with an additional window and reduced

behavior. Lemma 1 shows that it is sufficient to prove a CPR between those systems in
context to establish (2).

Lemma 1. Let A= (P;w), C = (Q;w), and Con= (Cx;wx) be system specifications.
Let w 2 (�P \ �Q)��Cx, wx 2 �Cx, K � (�P \ �Q \ �Cx)�fw;wxg, and
X := �Cx�(�P[�Q[fwxg). Let R be a retrieve relation from Q to P. Let(eP;w

wx) := A

K
^ Con and(eQ;w
 wx) := C

K
^ Con[[R�1]]D. Then

Pvcpr
R;w Q ^ ePvcpr

R;w
wx
eQ) P j[K]jCxvcpr

R;w
wx Q j[K]jCx[[R�1]]D

To solve the second task, consider the effect of adding a windowwx to the abstract
and concrete systems. By the following Equivalence (3), going fromw to w
wxmakes
the equivalence classes of the indistinguishability finer.

s�w
wx t , s�w t ^ s�wx t (3)

As Fig. 3 illustrates, the equivalence classes at both, the abstract and the concrete
level, become finer. Thus, we need to considerfewerpairs(r; s) of abstract traces in
ConditionIP of Definition 6, which weakens the condition, but at the same time, we
need to show astrongerproperty for the pairs(r; s) that we still must consider: For
all tracest of the concrete system, the probability of the concrete system to choose a
behavioru implementingr that is indistinguishable fromt by bothw andwx must be
the same as the probability of the system to choose an implementationv of s that is
indistinguishable fromt by bothw andwx. Formally, we need to show:

P
u 2 pfree

�
[t]
�

c
w
\ [t]

�
c
wx

� PQr (u) =
P

v 2 pfree
�
[t]
�

c
w
\ [t]

�
c
wx

� PQs(v) (4)

We already know[t]
�c

w
from provingA vcpr

R C. Proving Equation (4) as it stands
would mean to analyze which behavior ofC that is indistinguishable byw remains
indistinguishable when addingwx. From a practical point of view, however, it is more
suitable to analyze which observations made usingwxallow an adversary todistinguish
behavior that is indistinguishable byw, and to compare probabilities for that behavior.
This means to let the sums range over the set difference of the respective equivalence
classes. If the resulting equation of probabilities holds, we callwx non-disclosingon
the system with respect tor ands.

Definition 8 (Non-Disclosure).Let S= (Q;w) be a system specification, and let wx2
�Q�fwg be a channel of Q that is distinct from w. Let R be a retrieve relation from Q
to the data in two traces r and s. We call wxnon-disclosingon S wrt. R, r and s, written
QjRr;s ` w$ wx, iff the following condition holds:

8 t : traces(Q); Qr 2 Prob(QjRr); Qs 2 Prob(QjRs) �P
u2
�

T(Qr ;t)� [t]
�wx

� PQr (u) =
P

v2
�

T(Qs;t)� [t]
�wx

� PQs(v)

The set of traces T(Q; t) is given by T(Q; t) := T0(Q; t) [pfree(T1(Q; t)), where

T0(Q; t) = fu 2 traces(Q) j u�w t ^ #(u � fwxg) = #(t � fwxg) ^

: (9 u0 2 traces(Q) � u0 prefix u ^

u0 �w t ^ #(u0 � fwxg) = #(t � fwxg))g

(5)

T1(Q; t) = fu 2 traces(Q) j u�w t ^ u =2 T0(Q; t) ^

: (9 u0 2 T0(Q; t) � u prefix u0)g
(6)

The prefix-free setT(Q; t) is an alternative forpfree([t]
�w

) when computing the
probability thatQ produces a traceu with u �w t. Additionally, the (rather technical)
construction ensures thatT(Q; t) contains a maximal number of traces that have as many
observations over the other windowwx ast has.

Lemma 2 states that – givenP vcpr
R;w Q – non-disclosure characterizes the circum-

stances under which CPR is preserved when a new window is added.

Lemma 2. Let P and Q be processes, w;wx2 �P\�Q be channels common to P and
Q, and let R be a retrieve relation from Q to P. If Pvcpr

R;w Q then

Pvcpr
R;w
wx Q,

�
8 r; s2 traces(P) � r �a

w
wx s) QjRr;s ` w$ wx
�

To solve the third task, we need Lemma 3 that relates a given CPR to a CPR of the
same systems in a context that doesnot add a new window. When we apply this lemma
to prove compositionality, we will regardwxnot as a window but as an ordinary channel
of Cx.

Lemma 3. Let A= (P;w), C = (Q;w), and Con= (Cx;wx) be system specifications
with w 6= wx. Let K� (�P\ �Q\ �Cx)�fw;wxg be a set of channels over which A

and Con, and C and Con, respectively, can communicate. Let(eP;w
 wx) := A
K
^ Con

and(eQ;w
 wx) := C
K
^ Con[[R�1]]D. Then Pvcpr

R;w Q) ePvcpr
R;w
eQ.

Lemmas 1, 2, and 3 allow us to prove the main result of this paper: CPR is compo-
sitional if the context windowwx is non-disclosing on the refined subsystem.

Theorem 2 (Compositionality of CPR).Let A = (P;w), C = (Q;w), and Con=
(Cx;wx) be system specifications with w6= wx. Let K� (�P\�Q\�Cx)�fw;wxg be
a set of channels over which A and Con or C and Con, respectively, can communicate.

Let R be a retrieve relation from Q to P. LeteP be the process of A
K
^ Con, and leteQ be

the process of C
K
^ Con[[R�1]]D. If

1. Avcpr
R C, and

2. 8er;es : traces(eP) � er �a
w
wxes) eQjRer;es ` w$ wx

then(P j[K]jCx;w
 wx) vcpr
R (Q j[K]jCx[[R�1]]D;w
 wx).

Proof. AssumePvcpr
R;w Q. With Lemma 3, we getePvcpr

R;w
eQ, which impliesePvcpr

R;w
wxeQ by Assumption 2 and Lemma 2. From Assumption 1 and Lemma 1, we conclude
P j[K]jCxvcpr

R;w
wx Q j[K]jCx[[R�1]]D. ut

5 Related Work

Because indistinguishability and its preservation by refinement (CPR) is concerned with
hiding certain information about events occurring in a system from an adversary, our
work is related to research on non-interference.

Non-interference, first introduced by Goguen and Meseguer [1], is a security prop-
erty that has extensively been studied. Much work on non-interference is possibilistic,
i.e. it disregards probabilistic arguments. Ryan and Schneider [13] recast many known
definitions of possibilistic non-interference in (classical) CSP and show that the dif-
ferent ways of defining non-interference are closely related to the different notions of
process equivalence.

The windows in our setting can be viewed as a channel from the considered system
to an outside adversary, i.e. from the “high” system to the “low” outside world. In
contrast to non-interference, we donot require no information to flow through that
channel. Our definition of CPR ensures that possible observations which adversaries
may make of the implemented system do not offer them additional ways of inferring
information about the system than the specification allows them to.

Ryan and Schneider [13] discuss an approach of generalizing non-interference that
has a similar motivation: requiring total absence of information flow often is too strong
in practice. Their generalization is parameterized by an equivalence on traces, an equiv-
alence on processes, and a way of abstracting High’s behavior from a process. De-
pending on the instantiation of these parameters one obtains weak versions of non-
interference that allow Low to determine High’s behavior up to the equivalence on
traces. It may be interesting to recast our definition of indistinguishability into that
framework.

Gray [3] defines probabilistic non-interference (PNI), and J¨urjens [6] proves a com-
positionality theorem for a variant of that definition. The condition for PNI basically
states that the probability of a high user producing a particular observation of a low
user is the same for all behaviors of the high user. Because it formalizes the fact that
certain behaviors cannot be distinguished probabilistically, this condition of PNI is sim-
ilar to our refinement conditionIP. The difference is thatIP requires equal probabilities
of (indistinguishable) concrete behavior only for implementations of indistinguishable
abstract behavior.

Lowe [8] recently investigated how to quantify information flow from high to low
while staying in a possibilistic setting. Using a discretely timed version of CSP, he can
analyze timing channels, which we currently ignore. The aim of Lowe’s work is similar
to ours in that he does not per se require no information to flow from high to low: he
puts bounds on the capacity of channels whereas (by the abstract window) we restrict
the ways in which information may flow from high to low.

Graham-Cumming and Sanders [2] discuss the preservation of non-interference un-
der data refinement. They specify systems using the specification language Z [15] and
define security as indistinguishability on system traces with respect to a given user. They
give conditions under which a refinement of the internal data of the system preserves
indistinguishability. Their approach is possibilistic, and, in contrast to our setting, they
consider only refinements of the internal state of a system but not of the input and output
data. We emphasize refining the inputs and outputs, because an implementation must be
designed in such a way that choosing particular representations of inputs and outputs
does not allow adversaries to infer more information about the system than they are
allowed to.

Mantel [9] considers the preservation of information flow properties under refine-
ment. It is well-known that CSP-style refinement does not preserve information flow
properties in general [5]. Mantel shows how refinement operators tailored for specific
information flow properties can modify an intended refinement such that the resulting
refinement preserves the given flow property. Working top-down from the specification
to an implementation, the refinement operators may lead to concrete specifications that
are practically hard to implement, because the changes in the refinement they induce
are hard to predict and may not be easy to realize in an implementation.

Jürjens [7] uses stream processing functions to model systems, and he defines a pos-
sibilistic notion of secrecy in that setting. He identifies conditions under which certain
refinement operators on stream processing functions preserve his notion of secrecy.

6 Conclusions

Security-aware engineering of systems and software needs a notion of refinement which
comprises not only integrity and availability, but confidentiality as well. To contribute to
providing a firm basis for security-aware engineering, we developed a precise notion of
confidentiality-preserving refinement (CPR). CPR inherits all properties of behavioral
refinement and additionally introduces indistinguishability preservation, which is the
probabilistic characterization of confidentiality-preservation.

At the end of Section 4.1, we have identified two questions concerning the compo-
sition and refinement of secure systems: (i) Does the composed system still fulfill the
desired security properties? (ii) Does the replacement of the abstract by the concrete
system in a given context compromise confidentiality? Question (i) should be investi-
gated in more detail, taking into account our definition of CPR. For this investigation,
one can build on the work of Mantel [10] and Ryan and Schneider [13]. Concerning the
investigation of compositionality of refinement in a probabilistic setting, i.e., question
(ii), we know of no work prior to ours, as Graham-Cumming and Sanders [2], Mantel
[9], and Jürjens [7] consider possibilistic refinement only.

The present paper shows that confidentiality-preserving refinement is transitive, but
not compositional in general. An analysis of the situation shows that this result is not
surprising. It is even inevitable, because confidentiality properties are of a fundamen-
tally different nature than integrity (and – to a certain extent – availability) properties,
which correspond to the notion of correctness as considered in classical refinement. Re-
fining a subsystem that is embedded in a context yields a refinement of the composed
system, because the refined subsystem always behaves in a way that is consistent with
the behavior of the abstract subsystem. A corresponding property does not hold for
confidentiality. As Section 4.2 shows, it is possible to refine a subsystem in such a way
that additional ways of obtaining information about the subsystem become possible on
the concrete level as compared to the abstract level. This is due to the facts that, first,
the context adds an additional window to the system, and second, “non-confidential”
data may be refined to data that permits an adversary to gain additional information as
compared to the abstract system.

In such a situation, the only possible remedy is to investigate the conditions that
must hold in addition to the confidentiality-preserving refinement of the subsystem.
If proving these conditions is easier than proving the CPR for the composed systems
from scratch, then the notion of confidentiality-preserving refinement is still useful for
stepwise development using a divide-and-conquer approach.

With the notion of non-disclosure, we capture the additional condition that must
hold to guarantee the compositionality of CPR. This condition corresponds well to the
intuition that (i) the “information leaks” introduced by the context can be represented by
the additional data visible in the context’s window, and (ii) that adding a new window
must not change the relative probabilities of indistinguishable traces. Non-disclosure
does not only give insight into our notion of CPR, but also into the relationship between
refinement and compositionality in general.

We can therefore conclude that the notion of CPR may be useful for security-aware
engineering of systems and software, even if it cannot be compositional in general. The
work presented in this paper lays the foundations for an engineering approach to CPR:

identifying architectures that guarantee non-disclosure by construction will facilitate
the task of proving non-disclosure. Further research must apply our definitions and the-
orems to examples of larger scale, further investigate the relation of indistinguishability
of traces to other security properties, as well as start the development of tools supporting
our approach.

Acknowledgements.We thank Peter Ryan for extensive and constructive feedback on
a previous version of the paper. The anonymous reviewers also provided useful com-
ments. The program committee allowed us to considerably rework the paper during the
acceptance process. Thanks also go to Sandra Steinbrecher and Elke Franz for asking
good questions and finding some typos.

References

[1] J. A. Goguen and J. Meseguer. Security policies and security models. InIEEE Symposium
on Security and Privacy, pages 11–20. IEEE Computer Society Press, 1982.

[2] J. Graham-Cumming and J. W. Sanders. On the refinement of non-interference. In9th
IEEE Computer Security Foundations Workshop, pages 35–42. IEEE Computer Society
Press, 1991.

[3] J. W. Gray. Toward a mathematical foundation for information flow security.Journal of
Computer Security, 1992.

[4] M. Heisel, A. Pfitzmann, and T. Santen. Confidentiality-preserving refinement. In14th
IEEE Computer Security Foundations Workshop, pages 295–305. IEEE Computer Society
Press, 2001.

[5] J. Jacob. On the derivation of secure components. InIEEE Symposium on Security and
Privacy, pages 242–247. IEEE Press, 1989.

[6] J. Jürjens. Secure information flow for concurrent processes. InCONCUR 2000,
LNCS 1877. Springer-Verlag, 2000.

[7] J. Jürjens. Secrecy-preserving refinement. In J. N. Oliveira and P. Zave, editors,FME
2001: Formal Methods for Increasing Software Productivity, LNCS 2021, pages 135–152.
Springer-Verlag, 2001.

[8] G. Lowe. Quantifying information flow. In15th IEEE Computer Security Foundations
Workshop, pages 18–31. IEEE Computer Society, 2002.

[9] H. Mantel. Preserving information flow properties under refinement. InIEEE Symposium
on Security and Privacy, pages 78–91. IEEE Computer Society Press, 2001.

[10] H. Mantel. On the composition of secure systems. InIEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 2002. to appear.

[11] C. Morgan, A. McIver, K. Seidel, and J. W. Sanders. Refinement-oriented probability for
CSP.Formal Aspects of Computing, 8(6):617–647, 1996.

[12] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998.
[13] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-interference. In12th IEEE

Computer Security Foundations Workshop, pages 214–227. IEEE Computer Society, 1999.
[14] T. Santen, M. Heisel, and A. Pfitzmann. Compositionality of confidentiality-preserving

refinement. Technical Report 10/2002, Technische Universit¨at Berlin, 2002.
[15] J. M. Spivey.The Z Notation – A Reference Manual. Prentice Hall, 2nd edition, 1992.
[16] J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems. InIEEE

Symposium on Security and Privacy, pages 144–161. IEEE, 1990.

