
CryptoManager++
An object oriented software library for cryptographic mechanisms

Thilo Baldin,
CNI - Communications Network International GmbH
D-65760 Eschborn, Germany, Thilo.Baldin@cni.net
Gerrit Bleumer
Institut für Informatik, Universität Hildesheim
D-31141 Hildesheim, Germany, bleumer@acm.org

Abstract
An object oriented approach to implementing non-interactive cryptographic mechanisms is
presented. The primary design goals are object reuse, minimal code redundancy, easy update
and extension by new algorithms and an intuitive application programming interface. The
object orientation proved to cause a run time overhead of no more than 4%.

Keywords
Cryptographic library, application programming interface, object oriented programming

1 INTRODUCTION

Several cryptographic application programming interfaces are in use and so are different
standards for exchange formats of the involved data, e.g., public cryptographic keys and digi-
tal signatures. Moreover, there are hundreds of customized versions of C-code for the under-
lying algorithms, e.g., Schneier (1996). So what is new with CryptoManager++?
 Firstly, it is an object oriented concept by which the vast majority of current crypto graphic
mechanisms can be implemented and that achieves code reusability, minimal code redun-
dancy, and makes it easy to integrate new algorithms.
 Secondly, the resulting C++ software library can be customized to the security needs of
most applications: in particular to those using more than two cryptographic algorithms or
those needing quick or periodic update by improved cryptographic algorithms. It is also well
suited for training and education in practical cryptography.
 Thirdly, an easy to use application programming interface (API) is provided. Intuitive pro-
gramming is supported by exploiting polymorphism, and distractions by unnecessary details
or parameters are avoided. However, any other cryptographic API like those of FIPS and
X/Open (1994) can also be supported by our concept.

2 OBJECT ORIENTED DESIGN

At the first stage we characterize cryptographic mechanisms by two orthogonal properties
(see Figure 1): key structure (symmetric, asymmetric, keyless) and cryptographic purpose
(encipherment, authentication, hashing, etc.). There are practical examples of almost every

combination of a key structure and a cryptographic purpose. Thus, we capture each property
by an abstract class and use multiple inheritance in order to combine properties at the next
stage. An example at this stage is the class “Sign”, which provides asymmetric authentication.
The corresponding mechanisms, i.e., digital signature mechanisms, are found at the next
stage, where we have specific classes for RSA, DSA, ElGamal signatures, etc. All of them are
descendents of the class “Sign”. This gives a rather unified API, which provides, e.g., only
one method “sign” hiding all the different algorithms of the various signature mechanisms.
 In addition to the elementary mechanisms considered so far, there are hybrid mechanisms
that use the services of other (elementary or hybrid) mechanisms. Hybrid mechanisms are of
practical relevance because they combine the advantages of asymmetric key management
with the performance of symmetric or keyless mechanisms. A concrete example is to sign a
message by first applying a fast hash function and then signing only the resulting hash value.
Since we have not found hybrid mechanisms with cyclic dependencies, we regard each as a
tree of elementary mechanisms. The root mechanism, digital signature in our example, is sug-
gested to be inherited from the corresponding class “asymmetric authentication”. Within the
tree, mechanisms can be parametrized by other mechanisms by means of templates. The ap-
plication programmer neither has to care about managing different keys nor about coordi-
nating several elementary mechanisms. He need not even be aware of how many different
keys he works with.

Inherit to

Use as server object
Hybrid SignRSA

Sign Fast Hash

KeylessAsymmetric HashAuthentication

PurposeKey Structure

Base

Figure 1. Excerpt from the hierarchy of inheritance of CryptoManager++

3 SECURITY, PORTABILITY, EFFICIENCY

The security parameters, including key length, of each single instance of a cryptographic
mechanism can be adapted to the risks faced by an application. The first implementation of
the software library is in C++. For faster performance, we use a small (about 700 loc) engine
for multiple precision integer calculations written in SPARC assembler.
 A Sun SPARC Station 5 achieves a hash performance of about 28 MBit/s for MD5, 25
MBit/s for RIPE-MD and 11 MBit/s for SHS. Encryption performance is about 1,6 MBit/s for
IDEA, 1 MBit/s for DES and 25 KBit/s (decryption: 1 KBit/s) for RSA with a key length of
1024 bit (all in CBC mode). The run-time overhead caused by (multiple) inheritance and
overloading is less than 4%.

Acknowledgment: We would like to thank Ralf Kanne and Frank Sudholt for their practical
support as well as for many stimulating discussions on object oriented design.

4 REFERENCES

Schneier, B. (1996) Applied Cryptography (2nd ed.). John Wiley & Sons, New York.
X/Open Company Ltd. (1994) Generic Security Service API (GSS-API) Base, Preliminary

Specifications. X/Open Document Number: P308, ISBN: 1-85912-025-3.

5 BIOGRAPHIES

Thilo Baldin successfully finished his studies in computing science in 1995 at the University
of Hildesheim, where he worked as a researcher at the time this paper was written. His main
interests are security in open communication networks (especially telecommunications net-
works) and mathematical cryptography. He currently works at the IT-security department of
CNI - Communications Network International GmbH, a commercial German telecommunica-
tions network provider.

Gerrit Bleumer received his diploma in computing science from the University of Karlsruhe
in 1991 and is now a researcher at the University of Hildesheim. His main interests are secu-
rity and privacy in open communication networks and distributed systems, mathematical
cryptography, software implementation of cryptosystems and security critical applications
such as in health care. He has worked for an EU research project and contributed several
publications to international conferences on the above topics.

