
Technical recommendations  o n
Cryptographic Mechanisms for

IT and Security Personnel

EXECUTIVE SUMMARY

The comprehensive objective of SEISMED (a    S   ecure    E   nvironment for    I   nformation     S    ystems
in      MED    icine) was to elaborate a consistent, harmonized framework for medical data
protection throughout Europe. The specific technical proposals of SEISMED are thus
accompanied by a high level security policy which presents the underlying principles. This
approach is consistent with the forthcoming European ITSEC activity.

SEISMED proposes a suite of cryptographic mechanisms in order to provide sufficient
flexibility to meet the characteristic challenges of health care data processing:
• A long tradition of decentralized processing of health care data with multilateral and

legitimate interests.
• Ultra high sensitivity of personal medical data whose disclosure might not be repairable

by, e.g. smart-money.
• Long periods of time (up to 30 years) over which health care data must be archived in its

original state.

A 20 man-month workpackage evaluated the pertinent cryptographic literature, other
relevant EC-projects (RACE Integrity Primitives Evaluation project RIPE), and renowned
conferences (IACR Crypto, IACR Eurocrypt, ACM Symposium on Theory of Computing,
Symposium on the Foundations of Computer Science, IEEE Symposium on Research in
Security and Privacy, etc.). The result is a cryptographic guideline which is presented by
separate documents to three different target audiences.

Cryptographic guideline of SEISMED

Audience Document Title Content

Health Care Management
Guideline for Cryptographic
Mechanisms
—Health Care Management—

Odds and ends of cryptography:
The use for health care IT-
systems

IT-system end-users
Guideline for Cryptographic
Mechanisms
—IT-system end-users—

Odds and ends of cryptography:
The benefits for IT-system end-
users

IT and security personnel
Technical Recommendations for
Cryptographic Mechanisms
—IT and security personnel—

Suite of proposed cryptographic
mechanisms



Health Care Management

This part addresses the management of a health care environment. While a rapidly evolving
information technology often leaves the management confused, the management is
responsible for keeping its health care environment working efficiently. To this end,
integrated IT systems appear to be the ideal solution. This report identifies their specific
risks which should be considered when deciding about new systems or upgrades of existing
ones. This is even more important since indeed the management decides about IT-system
installation, but in many cases the medical end-users like physicians are accountable for
breaches of security of these systems. Hence, a management will only succeed in installing
integrated IT-systems if it succeeds in inspiring the confidence of the end-users into these
systems. Severe limitations of conventional security measures like passwords are identified
and it is shown how these limitation can be overcome by applying cryptographic
mechanisms. General aspects of integrating cryptography into existing applications are
discussed.

IT-system end-users

This part addresses IT-system end-users, like physicians, medical staff, etc. who deal with
sensitive medical data. Normally, these end-users are personally responsible for the medical
data they input and process. Complementarily, they are also responsible if such data is
modified or misused by other users. Hence, system end-users are particularly anxious about
the risks which stem from the use of IT-systems. A conclusive introduction to the
fundamental benefits of cryptography is provided which outlines how the identified risks
can be reduced or eliminated.

IT and security personnel

This part addresses software and hardware designers and implementors who are responsible
for the security of an IT-system. A suite of cryptographic mechanisms is proposed to be
used by health care IT-systems.

First, the identified security requirements are mapped to cryptographic building blocks.
Second, a few alternative cryptographic mechanisms are proposed to implement each
building block. This two-step approach was found useful to make the document more
readable and adaptable to future results in cryptologic research. In order to support the
selection of mechanisms that comply with a given security policy, this report analyses
explicitly how strong an adversary the proposed mechanisms resist. Two key applications in
health care data processing are digital networks and databases. Specific proposals outline
how these key applications can make use of the proposed cryptographic mechanisms.

Demonstrator

In order to demonstrate the functionality and efficiency of the recommended mechanisms, a
software prototype (SECURE Talk) was built that protects data transferred through (linked)
Apple Talk networks from unauthorised disclosure and undetectable modification. The
demonstrator also provides an automatic key management for all cryptographic mechanisms.
All results are documented in the document “Technical Recommendations for Cryptographic
Mechanisms —IT and security personnel—”. SECURE Talk is available as a software
application for Apple Macintosh from the author.



1 INTRODUCTION

Health care in Europe is characterized by a rapid development of information technology.
More and more system components (hardware and software) for analysis, diagnoses, and
treatment become increasingly efficient and integrated. The evolving integrated IT-systems
are assumed to be widely distributed, potentially over many countries. Similarly, their
control is assumed to be shared by many subjects like patients, physicians, medical staff,
hospital administrations and managements, and national or even international institutions
who want to communicate and cooperate. One of the characteristics of health care is that the
different autonomous subjects who use the integrated IT-system have a common interest in
such a system, but should and surely will stay autonomous. Every subject in health care has
vital needs, and since hardly any subject will trust the entire IT-system, the system will only
be credible and accepted if it is provably secure, i.e., if it provably respects the subjects'
legitimate needs.

The notion of security can be formalized by specifying (i) a correct system behavior
and (ii) an adversary model, both with respect to all subjects involved. Then a system is
called secure if and only if it behaves correctly even if adversaries behave as maliciously as
admitted by the adversary model.

The correct system behavior, (i), is often specified by some required services,
which shall happen on demand, i.e., availability, and some forbidden services, which
must not happen at all, i.e., confinement, (e.g., undetectable modification of data,
repudiation of the origin of data, release of confidential data). Naturally, cryptographic
means cannot enforce services, but they can prevent forbidden services or support to detect
if they have happened. Hence, IT-systems are favorably equipped with cryptographic means
since these means credibly support the subjects in keeping their individual interests of
confinement.

The adversary model (ii) is usually specified by an interaction model and a
complexity model. They describe the adversaries' capabilities with respect to interaction
with the mechanism (e.g., which system components can be controlled in which way by
adversaries?) and with respect to their computational complexity (e.g., which computational
resources are available for adversaries?).

1 . 1 Which services of confinement are considered?

Four basic services of confinement are considered which can be achieved by means of
cryptography:

(1) confidentiality,
(2) data authentication in the sense of detectability of modification,
(3) entity and data authentication, and
(4) hashing.

Hashing (4) is usually not counted among security services. But since it is sometimes useful
in itself and is fundamental for the other three, it is included in the list. Obviously, there are
other important aspects of security [ISO7498-2] like access control, and integrity. They
comprise aspects of availability and of confinement. Access control means the possibility of
access for authorized subjects as well as the restriction of access for unauthorized subjects.
Integrity means that data is available and correct. The latter is covered by (2) and (3). A third



important security issue is anonymity. An individual might be anonymous during some
action relative to all other parties performing the same action. To achieve such
indistiguishable actions, synchronization protocols are needed. Since protocols are beyond
this guideline, anonymity is not covered.

Each of the above services can be implemented by cryptographic mechanisms or a
combination of several mechanisms. It is a characteristic trend in cryptology to provide
relatively few elementary building blocks and to combine the more complex mechanisms
from them. Advantages and dangers are obvious; cryptanalysis can focus upon the few
building blocks, but combining two building blocks might insert new flaws.

All cryptographic mechanisms proposed are partitioned into four cryptographic
building blocks: encipherment, message authentication codes, digital signatures, and
hash mechanisms in order to provide the respective services (1), (2), (3), and (4). Fig. 1-1
gives an overview. All mechanisms of one cryptographic building block provide the same
characteristic operations (e.g., encipher and decipher for encipherment). The operations
achieve the confinement property of the respective service if they are used with suitable
cryptographic keys. Consequently, individual interests of confinement can be achieved
by using individual cryptographic keys.

Note: In principal, for different mechanisms different keys should be generated and
used! Nevertheless, this guideline sometimes calls them by the same name. For all
operations of Fig. 1-1 the key variables k, k ' are used with the understanding that
they are local parameters, NOT global constants!

services of con-
finement

cryptographic
building block

characteristic
operations

examples of specific
mechanisms

confidentiality encipherment
c := encipher(k, m),
m := decipher(k', c)

DES, RSA (with redun-
dancy predicate)

detectability of
modification

message authentication
code (MAC)

t := code(k, m),
check(k‘, m, t)

Carter Wegmann Codes,
DES-PCBC

non-repudiation digital signature
s := sign(k, m),
verify(k‘, m, s)

GMR, RSA (with hash
function)

collision-free
hashing

hash mechanism hash(k, m)
Iterated hash mechanisms

Fig. 1-1 Services and cryptographic building blocks

Also note that digital signatures and encipherment mechanisms are introduced as
separate classes of mechanisms. There are, however, algorithms like RSA which are
utilized to implement a mechanism of either class. This misled some authors into
recommending that RSA encipherment could be used to achieve digital signatures in the
following way:

s = sign(k', m) := decipher(k', m)
verify(k, m, s) ≡ (m = ? encipher(k, s))



Although this recommendation is algebraically correct, a naive implementation might
lead to an insecure digital signature mechanism. Hence, the above equalities should not
be employed for any secure mechanism design.

The mechanisms of one cryptographic building block may employ a mechanism of another
building block. Some blocks systematically use other blocks, i.e., all of their mechanisms
are implemented by the help of some mechanism(s) of the other building block. Some
blocks, use other blocks only partially, i.e., only certain mechanisms are implemented by
the help of some mechanism(s) of the other building block. Fig. 1-2 presents how
cryptographic building blocks make use of one another.

Symmetric
Blockciphers

Secret Keyed
Hashfunctions

Message Authenti-
cation code

Asymmetric
Encipherment

One-Way
Hashfunctions

Public Keyed
Hashfunctions

Digital
Signature

Asymmetric
Blockciphers

mechanisms
of this class..

be implemented by me-
chanisms of this class.

should
generally..should..

might
(zur Not)..

All.. Certain.. Some..

Fig. 1-2 How cryptographic building blocks make use of one another

1 . 2 What kind of adversaries are considered?

A measure for the security of a specific cryptographic mechanism is how strong an ad-
versary it (provably or experimentally) resists. For each cryptographic building block the
characteristic interaction models of adversaries are discussed. Basically, one distinguishes
passive adversaries who can only receive certain output from the mechanism under attack
from active adversaries who can also provide input to the mechanism. (E.g., ask
questions.)

The three complexity models considered for adversaries are: unconditional, compu-
tational, and ad-hoc. They describe how complex a problem a respective adversary can
solve , i.e. to compute a solution in time polynomial in the size of the problem instance
[GaJo_79]. An unconditional adversary is able to solve all problems in NP . A compu-
tational adversary is only able to solve problems in P . An ad-hoc-adversary is unable to
solve a particular problem (specified by the cryptographic mechanism under consideration).
The only formal proofs of security without unproved assumptions are known for
unconditional adversaries. Since P ≠ NP  has not been proved so far, all formal proofs of
security against computational adversaries rely on some complexity theoretic assumption.
The better studied an assumption is, the more credible the proof appears. For example, the
factorization assumption is well studied. It states that factoring certain integers is not in P .
Against ad-hoc adversaries, security is not proved, but it is assumed entirely. These ad-hoc-
assumptions are young (< 20 years) compared to the classical assumptions of complexity
theory.

The security provided by the key of a cryptographic mechanism partially depends upon
the choice of its security parameter(s). For example, a passive attack against the
cryptographic key is an exhaustive search through the space of all possible keys. Hence,
one of the most important security parameters is the cardinality of the space of possible



keys, which mainly determines the size of each key. Under further assumptions, the amount
of time and money needed for a successful attack can be estimated from this security
parameter.

1 . 3 How to read this guideline

After the relevant notation is introduced in chapter 2, chapters 3, 4, 5, and 6 propose
specific cryptographic mechanisms for each of the four cryptographic building blocks. They
are clearly arranged by a) proposing specific mechanisms1 and advising the choice of their
parameters, b) providing the necessary background information on cryptanalysis, c)
showing the efficiency of the proposed mechanisms with respect to performance and
memory requirements, and d) considering some aspects of standardization.

Field of interest Section within chapters 3, 4, 5,
6

a) Proposals 1 Proposed mechanisms

2 Choice of parameters

b) Background Information 3 Adversary models

on cryptanalysis 4 Cryptanalysis

c) Efficiency 5 Time and memory requirements

d) Standardization 6 Aspects of standardization

Section 1 presents the algorithms in a modular way beginning at the “top” and going down
to the “bottom”. Hence, the overall structure of the algorithms is presented first followed by
more and more detail. The advantage of getting an overview before being flooded with
mathematical detail hopefully outweighs the disadvantage of forward references. Moreover,
forward references never point ahead more than a few sections.

In practice, one is looking for an “acceptable” trade off between security and efficiency (in
terms of performance and budget). What “acceptable” means depends on, e.g., the results
of risk analysis. To provide sufficient flexibility, for most mechanism classes more than one
specific mechanism is provided. The guiding principles for the proposed suite of
cryptographic mechanisms are:
• Mechanisms and their respective algorithms should have been published in the open

literature and should have been proven to be secure. If no proof exists, the algorithms
should have resisted several years of cryptanalysis by independent research.

• The recommendations should reflect the latest results of cryptologic research.
• One of the most secure, but still practical mechanism and
• one of the most efficient, but still secure mechanism should be recommended.

Chapter 7 deals with valuable combinations of some of the mechanisms introduced. There
are two basic fields of application of cryptographic mechanisms, computer networks and
databases. In computer networks usually numerous subjects like institutions and individuals
have their own legitimate security interests and, thus, the interaction model of possible

                                                
1 Throughout this report, the algorithmic detail of the recommended cryptographic mechanisms is

completely referenced. For many of the recommended algorithms, BRUCE SCHNEIER provides descrip-
tions and C-source code in [Schn6_93].



adversaries is highly decentralized. E.g., individuals might regard institutions or
maintenance companies as adversaries. Thus, all the subjects have a need to exchange
cryptographic keys. Chapter 8 proposes a key management for medical computer networks.
In computer databases, usually the interaction model is more centralized. E.g., the operating
system or the data base management system are regarded as adversaries with respect to
confidentiality. Hence, sensitive data might be enciphered. Chapter 9 summarizes the
theoretical limits of this approach and proposes some feasible solutions.

2 NOTATIONS

The following notations are used throughout this report.

iff …if and only if…

I N denotes the set of positive integers {1, 2, …}

I N0 denotes the set of non-negative integers {0, 1, 2, …}

Z Z denotes the set of integers {0, ±1, ±2, …}

Z Zm = Z Z/mZ Z denotes the set of residues modulo m

Z Zm
*  denotes the multiplicative group of Z Zm .

QRm = {r2| r ∈ Z Zm
* } the set of quadratic residues modulo m.

I P = {2, 3, 5, 7,…} denotes the set of all primes.

I Phard denotes the set of primes p for which p–1 contains at least one big factor (i.e., ≥
p2/3) [Gord_85, BrDL_93].

Tl,δ,∆,P,Q = {(p,q,m) ∈ I N3| p ∈ P ∩ I Phard, q ∈ Q ∩ I Phard, m = pq, len(m) = l,

δ ≤ |len(p) – len(q)| ≤ ∆ }

denotes the set of integer triples such that the third component, the product of the
first and second component, is l bit long and infeasible to factor if restricted to
time polynomial in l.

x :∈R A denotes the random choice of an element x from the set A where any possible
element is chosen with equal probability.

x ← a() denotes the random choice of an element x by some indeterministic algorithm a.

a mod n denotes the least non-negative rest of a division a by n, where a ∈ Z Z, n ∈ Z
Z\{0}.

a div n denotes integer division: a div n := 
    

a − a modn

n
gcd(a, b) denotes the greatest common divisor of two integers a and b.

cra(a (mod n), b (mod m)) denotes the chinese remainder algorithm, i.e., the unique integer
c ∈ {0, .., n•m–1} such that c = a (mod n) and c = b (mod m).

⊕ denotes the bitwise XOR operator. ⊕: {0,1}i × {0,1}i → {0,1}i, for every i ∈ I
N.



ε denotes the empty binary sequence.

| | denotes the operator for concatenation of binary sequences.

len(x) denotes the function which returns the length of the binary sequence x ∈ {0,1}*

in bit.

substr(s, i, j) returns the j bit substring of the binary sequence s starting at the i. bit.

0xA1F denotes a constant in hexadecimal form. I.e., the number ((10•16)+1)•16)+15

The technical recommendations throughout this guideline comprise some algorithms. The
algorithms are notated mathematically rather than in a certain programming language. Where
appropriate a PASCAL-like syntax is used. Algorithms can be roughly specified by a
mapping which presents their input and output domains. E.g.,

a: A → B denotes an algorithm a that takes one input from the set A and indeterministically
outputs an element from domain B . Sometimes, not only one algorithm a, but a
whole family aF, F = {f, g} of algorithms with equal domains is considered. If
the domains do not coincide completely, but certain algorithms require inputs that
others do not, those inputs are called optional and are enclosed in curly brackets.

aF: {A } → B denotes a family of algorithms with optional input from A , i.e., not all of
them take an input from A.

E denotes a block encipherment mechanism (chapter 3). It consists of two
functional algorithms for encipherment and decipherment:

encE: EKeyE × PBE → CBE, decE: DKeyE × CBE → PBE

EKeyE, DKeyE denote the domain of possible encipherment keys and deci-
pherment keys, PBE = {0,1}β, CBE = {0,1}χ denote the domain of possible
blocks of plaintext and ciphertext, respectively. The block lengths β and χ need
not be the same. The third algorithm indeterministically generates pairs of
matching encipherment and decipherment keys for E:

(ek, dk) ← keygenE(κ), where ek ∈ EKeyE, dk ∈ DKeyE

Generally, κ determines the cardinality of the domain DKeyE of decipherment
keys of E. (|DKeyE| = 2κ)

D denotes a core authentication mechanism. It consists of two functional algorithms
for producing and checking authentication tags:

ecdD: EKeyD × MBD → TD, chkD: CKeyD × MBD × TD → {TRUE, FALSE}

EKeyD, CKeyD denote the domain of possible encoding keys and checking keys,
MBD, TD denote the domain of possible messages and tags, respectively. The
third algorithm indeterministically generates pairs of matching encoding and
checking keys for D:

(ek, ck) ← keygenD(κ), where ek ∈ EKeyD, ck ∈ CKeyD

Generally, κ determines the cardinality of the domain EKeyD of encoding keys of
D. (|EKeyD| = 2κ)



G denotes a core signature mechanism. It consists of two algorithms for producing
and verifying signatures:

sigG: SKeyG × MBG → SG, verG: VKeyG × MBG × SG → {TRUE, FALSE}

SKeyG, VKeyG denote the domain of possible signature keys and verification
keys, MBG, SG denote the domain of possible messages and signatures, re-
spectively. The third algorithm indeterministically generates pairs of matching
signature and verification keys for G:

(sk, vk) ← keygenG(κ), where sk ∈ SKeyG, vk ∈ VKeyG

Generally, κ determines the cardinality of the domain SKeyG of signature keys of
G. (|SKeyG| = 2κ)

In order to support the intuition, some algorithms will be presented graphically as well. This
is particularly useful to clarify the flow of data between algorithms hosted at separate entities
or the modular structure of an algorithm which itself uses other algorithms. Square and
rounded boxes indicate deterministic and indeterministic behaviour, respectively.

Indeter-
ministic

Algorithm

Deter-
ministic

Algorithm

Fig. 2-1 Graphical representation of deterministic and indeterministic algorithms

3 ENCIPHERMENT MECHANISMS

Informally, the purpose of an encipherment mechanism (also called cryptosystems or
simply ciphers) is to map binary sequences of “plaintext” to corresponding binary sequences
of “ciphertext” in such a way that only someone who knows the decipherment key can
efficiently recover the input sequences (plaintexts) from the output sequences (ciphertexts).
In order to achieve this property, the encipherment operation is parametrized by an
encipherment key whereas the decipherment operation is parametrized by a decipherment
key. Let EKeyE, DKeyE be respective domains of encipherment keys and decipherment
keys, and let P and C be respective domains of possible plaintexts and ciphertexts. Then, an
encipherment mechanism (sometimes also called stream encipherment mechanism)
provides two characteristic operations:

encipherE: EKeyE × P → C, decipherE: DKeyE × C → P

and an indeterministic operation

(ek, dk) ← keygenerateE(κ), where ek ∈ EKeyE, dk ∈ DKeyE



which on input a security parameter κ, outputs a pair (ek, dk) of matching encipherment and
decipherment keys. An encipherment mechanism yields for each such matching pair (ek, dk)
and every input p ∈ P

decipherE(dk, encipherE(ek, p)) = p

key-
generateE

decipherEencipherE

dk

ek “=” dk

p c = encipherE(ek, p) p

κ

Fig. 3-1 Flow diagram for encipherment mechanisms

Fig. 3-1 gives the flow diagram for encipherment mechanisms. Deterministic algorithms are
indicated by square boxes whereas indeterministic algorithms are given by capped boxes. In
the sequel, these boxes will be refined to a certain extent. According to Fig. 3-1 refinements
of encipherment and decipherment are shown on the left hand side and right hand side,
respectively.

An encipherment mechanism is called secure if it resists at least a total break, i.e., if it is
infeasible for an adversary to figure out the decipherment key. Sometimes, however, one
will not even tolerate weaker kinds of breaks like the following in order of decreasing
severity:
universal break: figure out an efficient decipherment algorithm which is functionally

equivalent to decipherE,
selective break: figure out the corresponding plaintexts to some particular ciphertexts

chosen by the adversary,
existential break: figure out at least one pair of corresponding plaintext and ciphertext, no

matter what the ciphertext is. This goal is trivial for asymmetric encipherment systems.

Note: The security of a well-designed encipherment mechanism does NOT rely
upon the secrecy of its algorithms encipher and decipher, but solely upon the secrecy
of its decipherment keys.

Encipherment mechanisms are partitioned into symmetric encipherment mechanisms
(also called conventional encipherment mechanisms), asymmetric encipherment
mechanisms (also called public key mechanisms) and hybrid encipherment
mechanisms. For symmetric mechanisms it is feasible to compute the decipherment key
from a given encipherment key, whereas for asymmetric mechanisms it is not. Hence, the
encipherment key and the decipherment key of a symmetric mechanism are understood to be
basically the same; they are both called a secret key. Those of an asymmetric mechanism



are understood to be significantly different; the former is called public key whereas the
latter is called private key. Hybrid mechanisms provide the advantages of asymmetric
encipherment (lean key management) and those of symmetric encipherment (efficiency).

keygenerateS
S = DES, 3DES,
       G-DES, IDEA

keygenerateA
A = RSA

keygenS

keygen
A

Symmetric encipherment Asymmetric encipherment

dkS dk
A

ekAekS

Fig. 3-2 Flow diagram for key generation for symmetric and asymmetric encipherment

It is proposed to employ iterated encipherment mechanisms. They are constructed by
a generic iteration of a block encipherment mechanism. Symmetric and asymmetric
iterated encipherment is reasonably achieved by a suitable iteration of a symmetric or
asymmetric block encipherment, respectively. Iterated encipherment mechanisms only take
input sequences whose length is a multiple of the block length of their respective block
encipherment mechanism. Hence, input sequences of arbitrary length first have to be padded
before they can be fed to the proposed iterated encipherment mechanisms.

3 . 1 Proposed mechanisms

The following proposals are useful compromises; they are not the desired optimum. This is
because no encipherment mechanism is known so far which is provably secure and highly
efficient. Hence, the best advice is to choose a compromise which meets one's requirements
as close as possible. This is the reason why several mechanisms are proposed.

Chapter 3.1.1 presents hybrid encipherment which in its turn requires both asymmetric
and symmetric encipherment. Chapter 3.1.2 describes the generic iteration for asymmetric
and symmetric encipherment and the input padding. Chapter 3.1.3 proposes a classical
mode of operation by which the partial results of the iteration are achieved. Finally,
chapter 3.1.4 proposes five symmetric block encipherment mechanisms, and chapter 3.1.5
proposes an asymmetric block encipherment mechanism. The security of the former five
bases on cryptographic intuition and experience. The security of the latter rests on the RSA-
assumption which is not equally well investigated as the factorization assumption.

Fig. 3-3 proposes which block encipherment mechanisms (first column) should be
combined with which auxiliary mechanisms (right columns).

block encipherment
mechanism E

padding
redundancy
predicate

mode of opera-
t ion

DES, 3DES, G-DES
IDEA

enpad
depad

–
(identity)

enCBC, enPCBC
deCBC, dePCBC

R S A
enpad
depad

redinsDES
redchkDES

enCBC, enPCBC
deCBC, dePCBC

Fig. 3-3 Proposal how to combine block encipherment with auxiliary mechanisms



3 . 1 . 1 Hybrid encipherment mechanisms

Definition: Let A , S be a pair of an asymmetric and a symmetric encipherment mech-
anism. Then, a hybrid encipherment mechanism is defined by the three operations:

encipherA,S: EKeyA × {0,1}+ → CBA × {0,1}+

encipherA,S(ekA, p) := (encipherA(ekA, dkS), encipherS(ekS, p))

where (ekS, dkS) ← keygenS is some randomly generated pair of keys.

decipherA,S: DKeyA × CBA × {0,1}+ → {0,1}+

decipherA,S(dkA,, c1, c2) := decipherS(dkS, c2)

where dkS := decipherA(dkA, c1).

keygenerateA,S = keygenerateA

Fig. 3-4 gives the flow diagram for hybrid encipherment and decipherment

encipher
A,S

decipher
A,S

keygen
S

enci-
pher

A

enci-
pher

S

deci-
pher

A

deci-
pher

S

dk
A

ek
A

dk
S

dkS

c
1
 =

encipher
A

(ek
A

, dk
S
)

c
2
 =

encipher
S
(ek

S
, p)

ek
S

pp

Fig. 3-4 Flow diagram for hybrid encipherment and decipherment

The two components c1, c2 of the ciphertext could, for example, simply be concatenated
since the first component is of fixed length and is, thus, easily identified by the receiver of
the ciphertext.

3 . 1 . 2 Iterated encipherment mechanisms

Definition: Let E be some block encipherment mechanism with PBE, CBE, EKeyE, DKeyE

its domains of plaintexts, ciphertexts, encipherment keys, and decipherment keys. Then,
an iterated encipherment mechanism is defined by two functional operations

encipherE: EKeyE × P → C

encipherE(ek, p) := cb1| |cb2| |…| |cbn,

for all i ∈ {1, .., n} let cbi := enmode(ek, pbi, pbi–1, cbi–1), and cb0 := 0

where pb1| |pb2| |…| |pbn := enpad(β, redinsE(p)), pbi ∈ PBE, and

decipherE: DKeyE × C → P

decipherE(dk, c) := redchkE(depad(β, pb1| |pb2| |…| |pbn)),

for all i ∈ {1, .., n} let pbi := demode(dk, cbi, cbi–1, pbi–1), and pb0 := 0

where cb1| |cb2| |…| |cbn := c, cbi ∈ CBE, dk some decipherment key for E, and β the length of
plaintext blocks of E according to dk. The padding and depadding function (enpad, depad)
are defined below. Some mechanisms require to distinguish valid from invalid plaintexts.
The rationale behind it is to prevent an adversary from learning the plaintexts of arbitrary



ciphertexts by the help of a victim. It is proposed to apply the redundancy predicate defined
in chapter 3.1.3. The mode of operation is proposed to be cipher block chaining defined in
chapter 3.1.3 or plain cipher block chaining defined in chapter 7. Fig. 3-5 gives the flow
diagram for a mode of operation during encipherment and decipherment.

concat
blocks

demode split  in-to
blocks

p c

pb
i

cb
i

pb
i–1

cb
i–1

dk
E

concat
blocks

enmode
pad, split

in-to
blocks p

cb
i

pb
i

cb
i–1

pb
i–1

ek
E

c

decipher
E

encipher
E

memory memory

Fig. 3-5 Flow diagram for splitting a stream of data into blocks and processing the blocks by

a mode of operation

Third, the key generation is done by the corresponding indeterministic operation of E:

keygenerateE = keygenE

where (ek, dk) ← keygenE(κ), outputs a pair (ek, dk) of matching encipherment and de-
cipherment keys ek ∈ EKeyE, dk ∈ DKeyE on input a security parameter κ.

Definition: Padding and depadding are defined as follows:

enpad: {1, 2, .., 15+164} × {0,1}+ → {0,1}+

depad(β, s):= s| |
    
00…0

ν
123 | |d3| |d2| |d1| |d0, where

ν = (b – 16 – len(s)) mod β
(d3d2d1d0)16 be the hexadecimal representation of ν, i.e. ν = di

i

i
×

=∑ 16
0

3
.

Padding expands a sequence such that the length of the resulting sequence is a multiple of β ,
and such that the original sequence can easily be reconstructed. The sequence expansion is
at most β+15 bit which poses the restriction β ≤ 15+164 bit. If applied to block
encipherment mechanisms this allows for block lengths up to 8193 byte which is far more
than ever seems to be needed.

3 . 1 . 3 Redundancy predicate, mode of operation

A redundancy predicate works by inserting some redundant information into the plaintext
before enciphering it (redins). After deciphering, the resulting plaintext is accepted as valid
iff the redundancy check (redchk) succeeds. If redchk fails it returns an empty sequence
instead of an invalid plaintext.

Definition: Let E be some block encipherment mechanism, χ be the length of blocks of
ciphertext of E. HE be a one-way hash mechanism (chapter 6.1.5) based on E. Then a
stream oriented redundancy predicate is defined by two deterministic algorithms:

redinsE: {0,1}+ → {0,1}+, redchkE: {0,1}+ → {0,1}*

redinsE(s) := s| |hashE(s)



redchkE(t) := 


s
 if s ' = hashE(s);ε
 else

 , where

s = substr(t, 1, len(t) – χ);s ' = substr(t, len(t) – χ , χ) 

The stream oriented insertion of redundancy expands the input sequence by an additional
constant of χ bit.

Alternatively, the redundancy predicate of [ISO9796] can be used.

Definition: Let E be some block encipherment mechanism. Cipher B   lock C    haining (CBC)    
is defined as follows.

enCBC: EKeyE × PBE × PBE × CBE → CBE,   deCBC: DKeyE × CBE × CBE × PBE →
PBE

enCBC(ek, pb, pb', cb) := encE(ek, pb ⊕ cb),   deCBC(dk, cb, cb ', pb) := pb ⊕ decE(dk,
cb)

The flow diagram for the mode of operation is given by Fig. 3-6.

decE encE

enmodedemode

E E

cbi
pb

i

pbi–1 cbi–1

pb
i

pbi–1cbi–1

bitwise XOR addition mod 2β

Fig. 3-6 Flow diagram for the mode of operation

Observe, that for CBC the block pbi–1 is not used at all and, hence, only the block cbi–1 has
to be stored in every round. In other words, the blocks pbi–1 can be considered to be all zero
which means that the addition mod 2β can simply be omitted and the block cbi–1 is directly
fed into the bitwise XOR.

3 . 1 . 4 DES, 3DES, G-DES, IDEA

In the sequel, the encipherment and decipherment, operations of one block of plaintext and
the operation to generate a pair of matching keys will be denoted by

encE, decE, keygenE for E ∈ {DES, 3DES, G-DES, IDEA},

respectively. For the definition and implementation of the former two consult [Schn_93, pp.
219-243], for G-DES see [PfAß_90, PfAß_91], and for IDEA see [Schn_93, pp. 260-
266]. Generation of keys is simply as follows: The domains of encipherment and
decipherment keys are EKeyE = DKeyE = {0,1}κ \ WeakKeysE, where the security
parameter κ, and the set WeakKeysE are specific for each mechanism (chapter 3.2). The
key generation (keygenE) is by a uniformly random choice of an element k from the
respective domain and by finally returning (ekS, dkS) = (k, k) as a matching pair of keys.

DES [DES_77], 3DES [MeHe_81], G-DES [BiSh3_91], and IDEA [LaMa_91] are pro-
posed as symmetric block encipherment mechanisms. The former three are published since
1977, the latter since 1990. All of them had already been thoroughly analyzed before their
publication.



Even before it was standardized, the key size of DES (56 bit) was criticized as being too
short. In order to achieve an increased effective key size Triple-DES (3DES) or multiple
encipherment has been established in the literature [MeHe_81, KaRS_85, KaRS_88].
Although it is unlikely that the result of successive encipherment, each with a different key,
can be achieved by only one encipherment with an appropriate key, this has never been
proved to be impossible. 3DES encipherment and decipherment is defined as follows, with
3DES keys being twice the size of DES keys.

enc3DES(ek1| |ek2, s) := encDES(ek1, decDES(ek2, encDES(ek1, s)

dec3DES(ek1| |ek2, s) := decDES(ek1, encDES(ek2, decDES(ek1, s)

G-DES in the following means what [BiSh3_91] calls G-DES with the number q of parts
per block restricted to q = 2 and the number n of rounds restricted to n = 16 2. Thus it is a
generalization of DES in two respects.

Subkey independence: All 16 subkeys can be chosen independently from each other.
This results in an effective key size of 16 × 48 = 768 bit. This generalization implies no
extra run time cost of hard- or software enciphering and deciphering [BeFG_89,
KFBG_90]. Hence, the generalization sticks to the design rule not to restrict the function-
ality of an implementation until this slows down its performance.

Design of S-boxes and permutations: The flow of data is not changed compared
to DES, but all S-boxes and permutations can be chosen arbitrarily. (Of course S-boxes
have to be designed carefully [AdTa1_90, Forr2_90, WeTa_86]!) This flexibility allows to
reflect the latest results of cryptanalysis [DaTa_91]. Variable S-boxes do not affect the
performance of software implementations and only slightly3 reduce that of hardware imple-
mentations. Variable permutations also do not affect software implementations4, but
significantly reduce that of hardware implementations because much bigger matrices must be
provided. Highly efficient software implementations can be obtained by the precomputation
of working tables for S-boxes and permutations (chapters 3.5.1, 3.5.2). In order to allow
for a uniform design of hard- and software implementations it is proposed to stick to the
original permutations, but leave the S-boxes variable.

Note: Variable S-boxes are only proposed as an option. The original S-boxes are
proposed unless there are definite flaws detected.

IDEA is comparatively young in the field. Very poor progress in cryptanalysis of IDEA
[Meie_94] encourages its use. Efficient software implementations of IDEA are available in
the public domain.

3 . 1 . 5 RSA

In 1978, RONALD RIVEST, ADI SHAMIR, and LEONHARD ADELMAN published the first
asymmetric block encipherment mechanism, but could not base its proof of security upon
some thoroughly investigated complexity theoretic assumption (see chapter 3.3). After the

                                                
2 However, results of differential cryptanalysis (chapter 3.4) recommend to allow the number of rounds of

G-DES to be n ≥ 16.
3 This extra cost results from slower access to ROM than to RAM, because variable S-boxes have to be

stored within RAM instead of ROM.
4 This is true as far as the structure of the “expanding permutation” E is restricted a bit [PfAß1_90].



names of its discoverers, the original mechanism has been referred to as RSA. The
mechanism became quite popular and implementations of it are publicly available nowadays.
For implementation consult [Schn_93, pp. 281-287]. The original mechanism has
subsequently been improved by [QuCo_82, Denn_84, Damg_88].

Since pure RSA is a homomorphism it is proposed to enhance it by a redundancy
predicate (Fig. 3-3).

Definition: RSA block encipherment
Let κ ∈ I N be a security parameter, ω the computer word size in bit, pb ∈ {0,1}κ–ω 5 ,
cb ∈ {0,1}κ, be a block of plaintext and a block of ciphertext, respectively, then en-
cipherment and decipherment are defined as follows

encRSA(ek, pb) := pbe (mod n), decRSA(dk, cb) := cbd (mod n)

RSA keys are generated as follows:

(m, (p, q, d)) ← keygenRSA(κ)

where p, q are chosen randomly from the set RSAPrimes, such that

m = p × q ∈ Tκ,10,20,RSAPrimes,RSAPrimes

RSAPrimes = {p  ∈ I Phard|p' ∈ I Phard for at least one factor p ' of p–1, gcd(p–1, e) =
1},

d := e–1 (mod (p–1)(q–1)), e = 216 + 1

Note: Implementations of RSA require a multiple precision integer arithmetic
(MPIA) in order to process numbers of 100 up to 400 decimal digits depending on
the security needed.

3 . 2 Choice of security parameter(s) and keys

There are at least three security parameters relevant for each block encipherment mechanism
E proposed in chapter 3.1: the cardinality of the domain EKeyE of encipherment keys, of
blocks of plaintext PBE, and of blocks of ciphertext CBE. These cardinalities are determined
by the parameters κ, β, χ. Furthermore, for some mechanisms optional parameters are
proposed. Fig. 3-7 compares the proposed block encipherment mechanisms with respect to
their security parameters. Constant parameters are just indicated, whereas for variable
parameters a proposed range is given. Before picking some parameter from its proposed
range chapter 3.4 should be consulted.

E κκκκ  [bit] WeakKeysE optional
param.

D E S 56 [DaPr_89, 65-66] S-boxes

3DES 112 s.a. S-boxes

G-DES 768 s.a. S-boxes

IDEA 128 [DaGV1_94] –

                                                
5 The enciphering performance is the better the smaller ω  is, but data is handled most easily if ω  is the

bit size of the smallest entity addressable by the host machine [Zim1_86]. Hence, ω  should be the
computer word size, usually 8, 16, or 32 bit.



R S A {512, .., 1024} – –

Fig. 3-7 Security parameters of the proposed block encipherment mechanisms

3 . 3 Adversary models

Attacks are called active if the adversary is able to use the victim as an oracle by asking him
questions and receiving his answers (typically without the victim being aware that he his
under attack). Otherwise, they are called passive. Passive attacks against an encipherment
mechanism can be classified into

ciphertext-only attacks: the adversary only gets to know some ciphertexts C1, C2… and
is to infer the corresponding plaintexts.

known-plaintext attacks: the adversary additionally gets to know some pairs (p1,
c1),(p2, c2),… of corresponding plain- and ciphertexts. The C1, C2… are pairwise dif-
ferent from the c1, c2…

Furthermore, active attacks are classified into:

chosen-plaintext attacks: the adversary performs a known-plaintext attack except that
he himself chose the plaintexts p1, p2… before. This attack is trivial in the case of an
asymmetric encipherment mechanism because its enciphering operation is publicly
known.

(directed/adaptive) chosen-ciphertext attacks: the adversary performs a known-
plaintext attack, but, before, he was able to choose the ciphertexts c1, c2,… If he had to
choose all of them in advance the attack is called directed. If he could have chosen them
one after the other depending on the plaintexts he obtained before the attack is called
adaptive.

3 . 4 Cryptanalysis

The fundamental results are that symmetric encipherment mechanisms provably secure
against adaptive chosen-ciphertext attacks require a key domain as large as the domain of
plaintexts. (An example is the one-time pad.) Unfortunately, keys of that length are
impractical for most applications. Asymmetric block encipherment mechanisms provably
secure against chosen-ciphertext attacks can have keys of practical length, but so far only
inefficient mechanisms are known. For example, [NaYu_90] requires non-interactive zero-
knowledge proofs.6

Hence, for practical purposes, one can only apply symmetric block encipherment
mechanisms based upon some highly chaotic function. Since their security rests upon some
ad-hoc assumption their credibility relies on experience, i.e., years of unsuccessful
cryptanalytic attempts. Similarly, one can only apply asymmetric block encipherment
mechanisms based upon complexity theoretic assumptions less thoroughly investigated than
the classical factorization assumption or the discrete logarithm assumption.

                                                
6 Note that [BlGo_85] is only secure against passive attacks. It is totally breakable by an adaptive chosen-

ciphertext attack.



3 . 4 . 1 DES, 3DES, G-DES

DES, 3DES, and G-DES are chosen since they are well known, thoroughly cryptanalyzed,
available, and permit relatively high enciphering rates implemented in both hard- or
software.

No passive attack has come up that performs a total break of the full 16-rounds of DES,
3DES, or G-DES with significantly less effort than exhaustive search through the key
space. [ChEv_86, BiSh3_91] attacked DES with less than 16 rounds, but were, hence, of
theoretical interest only. Differential cryptanalysis [Bish_90, BiSh3_91] provides
chosen-plaintext attacks that totally break DES up to 16 rounds. ELI BIHAM and ADI

SHAMIR showed how this technique can be adapted to a lot of variants of DES. One special-
ized and improved version of this attack breaks the full 16-round DES [BiSh4_91] at the
adversary's cost of about 237.2 trial encipherments and a minimum amount of space. As
input it requires the ciphertexts corresponding to about 247 plaintexts chosen by the
adversary in advance. FEAL and N-Hash are analyzed in [BiSh_91] and Snefru, Khafre,
REDOC-II, LOKI and Lucifer are analyzed in [BiSh_92, BKPS_93]. Since these
publications, a lot of proposals came up to improve the above mentioned variants of DES.
Nevertheless, the original DES seems to be one of the hardest variants in the light of this
latest cryptanalytic technique. In turn, multiple encipherment appears to be even less
vulnerable by differential cryptanalysis than single encipherment DES.

Whether a chosen-plaintext attack, which requires at least 247 trial plaintexts, is indeed a
threat for a particular application, very much depends on other circumstances. In general,
the more a cryptographic device enciphers using the same key without asking why or for
whom, the more serious a chosen-plaintext attack against its key is.

So far, no attack has come up that aims at a universal break of DES, 3DES, or G-DES,
but such an attack might be possible. The criteria used for S-boxes have not been published
completely, neither have the complete criteria for their actual choice. Although [Copp_92]
came up with the most important ones, the skeptics were never convinced that no trapdoor
was built into the S-boxes of DES.

3 . 4 . 2 How powerful is differential cryptanalysis?

Let te denote the time of the DES encipherment of one plaintext block (64 bit). An active
attack against full 16 round DES can be performed in 237.2te adversary time plus 247te victim
time (for the encipherment of 247 chosen plaintexts). This results in a ratio of

    

dcDES

esDES

= 247−56 = 2−3 ≈ 1.95 × 10−3 (3.1)

compared to the complexity of the best known passive attack (exhaustive search through the
key space).

An active attack against G-DES with the S-boxes DES and 16 independent subkeys (48
bit each) requires the ciphertexts of 259 chosen plaintexts and 261te adversary time, which is
about 261–768 = 2–707 of the complexity of the best known passive attack (exhaustive search
through the key space of size 2768).

[GaOu_91] estimates the time and cost to break DES. It assumes that an exhaustive
search (es-attack) of the key space costs esDES = 256te time. Figures 3-8 to 3-11 compare
the costs of an es-attack to an active attack by differential cryptanalysis (dc-attack). A dc-



attack costs 237.2te time for DES (261te time for G-DES) and additionally the encipherment of
about 247 (259) plaintexts chosen by the adversary in advance. This results in an approximate
overall cost of dcDES = 247te (dcG-DES = 261te) time. Although the latter costs might be
decreased in near future by applying the new ideas of [BiSh4_91] this report conservatively
assumes dcG-DES = 261te. Fig. 3-8 and Fig. 3-10 present the estimations of [GaOu_91] for
DES. Fig. 3-9 and Fig. 3-11 extrapolate those estimations to a dc-attack by applying the
ratio (3.1)

speed of processors # processors required to run an es-attack against DES
within:

(Key tests / s) 1 year 1 month 1 week 1 day

1 million 2,300 27,400 119,200 834,000

2 million 1,150 13,700 59,600 417,000

4 million (1990) 600 6,850 29,800 208,500

32 million (1995) 75 850 3,700 26,100

256 million (2000) 9 107 500 3,300

Fig. 3-8 Number of processors required to run an es-attack against DES

Analogous results for G-DES are not known to be published. A conservative estimation
should calculate

esG-DES = 2768te = 2768–56esDES = 2712esDES

dcG-DES = 261te = 261–56esDES = 25esDES

Fig. 3-8 and Fig. 3-9 show the number of processors required for breaking DES by ex-
haustive search (ciphertext only attack) or by differential cryptanalysis (chosen-plaintext
attack), respectively.

speed of processors # processors required to run a dc-attack against DES within:

(Key test equivalents / s) 1 year 1 month 1 week 1 day

1 million 5 54 233 1,629

2 million 3 27 117 815

4 million (1990) 2 14 59 408

32 million (1995) 1 2 8 51

256 million (2000) 1 1 1 7

Fig. 3-9 Number of processors required to run a dc-attack against DES

speed of processors investment [$1,000] required to run an es-attack on DES
within:

(Key tests per second) 1 year 1 month 1 week 1 day

4 million (1990) 129.0 1,532 6,664 46,622



32 million (1995) 52.0 600 2,611 18,265

256 million (2000) 10.3 117 510 3,580

Fig. 3-10 Investment required to run an es-attack against DES

speed of processors investment [$1,000] required to run a dc-attack on DES
within:

(Key test equivalents / s) 1 year 1 month 1 week 1 day

4 million (1990) 0.252 2.992 13.016 91.059

32 million (1995) 0.102 1.172 5.100 35.674

256 million (2000) 0.020 0.229 0.996 6.992

Fig. 3-11 Investment required to run an es-attack against DES

Fig. 3-10 and Fig. 3-11 show the estimated investment required to break DES by exhaustive
search or by differential cryptanalysis, respectively. “A cost of $25.00 per processor was
assumed for the cheapest available technology, rising by a factor of ten for each 'generation'
of technology (roughly, five years newer and ten times faster), and decreasing by a factor of
10 (before deflation) every five years. The base figure of $25.00 includes the cost of
designing boards, control software and manufacturing. […] The results represent a guess
with an error of perhaps 50%.” (See [GaOu_91] for the exact basis of estimation.)

3 . 4 . 3 IDEA

Promising candidates of a block encipherment mechanisms resisting differential crypt-
analysis are the MARKOV ciphers with more than 4 rounds. One was published as a
“Proposed Encryption Standard” (PES) or “International Data Encryption Algorithm”
(IDEA) [LaMa_91, LaMa2_91]. It provides a key size of 128 bit.

3 . 4 . 4 RSA

RSA is proposed since it is well known, thoroughly cryptanalyzed, and available. Active
attacks that aim at a total break are not known. Passive attacks that aim at a total break are
exhaustive search through the secret key space and factorization of the public modulus. The
former costs exponential time (in the security parameter κ = ln(m)) and is, thus, less
economical than factorization, which can be done in subexponential time. One of the most
efficient known algorithms for factorization is the multiple polynomial quadratic sieve
(MPQS) which succeeds in

    
L m( ) = exp 1 + o 1( )( ) ln m( ) ln ln m( )



  steps

The number field sieve (NFS) succeeds faster for integers of a special form [LeMa1_90,
LeLe_90].

Other passive attacks have been considered by [SiNo_77, Herl_78, Berk_82], but were
found to be impractical [Rive_78, Rive_79, WiSc_79, Berk_82] if the prime factors p, q
and the public exponent e are chosen according to chapter 3.1.



The security of RSA rests never been shown to be equivalent to some classical
complexity theoretic assumption, e.g., factorization of integers. Hence a universal break
might be possible, but is not known.

Pure RSA is an isomorphism from the domain of blocks of plaintexts onto the domain of
blocks of ciphertexts. Thus, a selective break can be accomplished by a chosen-ciphertext
attack [Denn_82]. To overcome that weakness, a redundancy predicate is strongly
recommended for RSA. Indeed, [ACGS_88] have shown that figuring out certain particular
bits of plaintext is as hard as figuring out the whole plaintext out of a given ciphertext.

3 . 4 . 5 How powerful is factorization

Basically there are two passive attacks aiming at a total break of RSA; namely, exhaustive
search through the key space and factorization of the public modulus.

For a fixed size k of an RSA modulus the performance of exhaustive search can be
roughly estimated based on the DES results and a comparison of the current state of DES
and RSA hardware performances. In 1990 DES hardware achieved deciphering rates of
roughly 200 times as fast as RSA hardware did. Given a similar hardware development for
RSA as for DES the results of 3-8 and 3-10 may be extrapolated respectively.

The performance of factoring integers depends on the factorization algorithm actually
used and on its (hardware) implementation [see BrOd_92]. The most efficient factoring
algorithms are actually the multiple polynomial quadratic sieve (MPQS) and the number field
sieve (NFS) [LeMa1_90]. So far the NFS is best suited for integers of special form. The
complexity of MPQS is subexponential and thus beats a brute force attack against the
modulus by exhaustive search. [LeMa1_90] report one of the best factorization results so
far: They cracked a general integer of approximate length 330 bit in about 26 days. They
distributed the execution over a network of mainframes.

Given a security policy and thereby a lower bound for the period of integrity of an RSA
instance, it is hard to calculate an appropriate key size κ for the required instances.
Uncertainty arises, for example, from unpredictable technical and algorithmic progress.

[Rive4_91] looks at a period of 25 years (which might be far too short for some medical
applications). Within this period he assumes that no significant progress in factoring is
achieved and that the computational power available per dollar constantly increases by 40%
per year7. He further approximates the cost per MIPS-year8 (≈ 31.54×1012 operations) to
about $4.00. The following table Fig. 3-12 gives the resulting investment needed to factor
an integer of size κ in 1992/2017 respectively.

It must be stressed, however, that the integrity of data in real applications depends at
least as much on the security of the key management as on that of the encipherment
mechanism itself. This includes distribution, storage and erasure of keys (cf. chapter 8).

modulus size κκκκ
[bit]

number of operations
[MIPS-year]

investment in 1992
[$]

investment in 2017
[$]

5 1 2 2.12 × 106 8.48 × 106 1,696

7 0 0 19.57 × 109 78.27 × 109 15.65 × 106

                                                
7 For further assumptions see [Rive4_91]
8 Number of operations performed by a 1 MIPS processor during 1 year.



8 0 0 1.61 × 1012 6.45 × 1012 1.29 × 109

1 0 0 0 5.55 × 1015 22.21 × 1015 4.44 × 1012

1 1 0 0 248.04 × 1015 992.15 × 1015 198.43 × 1012

Fig. 3-12 Investment to factor a single RSA modulus according to [Rive4_91]

3 . 4 . 6 Valuation of the proposals

If high speed is of prior importance, DES or IDEA are recommended. If IDEA is not
available, but active attacks have to be countered, 3DES is a good choice with respect to
current expertise. Besides, DES, 3DES, G-DES, IDEA, and RSA there are a lot of other
block encipherment mechanisms proposed in the literature. Some of them are sorted out
because they were at least partially broken (e.g. encipherment mechanisms based on knap-
sacks, and most mechanisms based on Linear Feedback Shift Registers LFSRs etc.), some
have turned out at least not to be significantly stronger than DES or 3DES in the light of
differential cryptanalysis (e.g., FEAL, N-Hash, Snefru, Khafre, REDOC-II, LOKI,
Lucifer), and some younger ones remain to be investigated further (e.g. encipherment
mechanisms based on elliptic curves). In contrast to the “classical” DES and RSA which
have now been analyzed for about 16 years, these younger mechanisms have not been
cryptanalyzed to a similar extent. Consequently, they are not recommended here. But of
course, further progress in cryptologic research might show that other encipherment
mechanisms have benefits in security and practicality that make them worth being con-
sidered in the medical field.

If asymmetric encryption is needed RSA is recommended. If both, asymmetric behavior
and high speed are required, hybrid encipherment is proposed.

3 . 5 Implementations and their performance

3 . 5 . 1 DES hardware implementations

Six of the fastest DES chips are presented in the Fig. 3-13. Most of them offer several
modes of operation. The performances do not differ significantly between different modes
as far as 64 bit per block are processed.

avail-
abil i ty

technology
[µm]

chip size
[mm2]

modes of
operation

clock
[MHz]

bitrate
[Mbit/s]

[HoGD_85]
1985 3

4.0 × 4.0
= 16.0

? 9 ? 20

DEP T7000A
[AT&T]

1987 ? ?
ECB, CBC,
CFB, OFB

? 15.056

G-DES, M-DES
[KFBG_90]

1988 2
77.32

(40% free)
ECB, CBC,
CFB, OFB

10 40 10

                                                
9 Question marks indicate a lack of exact information.
10 This result is achieved internally upon the DES kernel of the chip. Externally a performance of 10

Mbit/s is achieved because access to the DES kernel is byte serial and asynchronous.



DES (G-DES)
[VHVD_88]

1988 3 (CMOS)
5.0 × 5.0

= 25.0
ECB, CBC,
CFB, OFB

16.7 20 11

AMD12

[Ste l_86 ,
AMD_85]

1989 ? ?
ECB, CBC,

CFB
? 14

uti-maco
[SAFE_90]

1990 ? ? ? ? 18

The implementations [KFBG_90, VHVD_88] not only allow to run DES, but also G-DES.
The performances show that this generalization does not reduce the performance of these
chips.

3 . 5 . 2 DES, G-DES software implementations

Some of the fastest known software implementations are summarized in Fig. 3-14. Note
that the 2nd and 3rd are G-DES implementations, the former being a fine-tuned version for
the Apple Macintosh, the latter a comparable version for the IBM-PC (8086 Code).

avail-
abil i ty

supported
processor

precomp.
[Kbyte]

modes of
operation

reference
machine

bitrate
[Kbit/s]

D E S
[PfAß_90]

1990
680x0

x ∈ {0…4}
106 all 13 Apple

Mac IIfx 14 1109

G-DES
[PfAß_90]

1990
680x0

x ∈ {0…4}
106 all

Apple
Mac IIfx

789

G-DES
[Mühl_89]

1990
8086, 80x86
x ∈ {1…4}

106 all
Toshiba

T5100 15 148.9

Rescrypt
[Resc_91]

1991
8086, 80x86
x ∈ {1…4}

? ECB
386 Clone

16 280

Fig. 3-14 Performance of DES-Software

3 . 5 . 3 3DES, IDEA

A software implementation of n-encipherment can, according to [PfAß1_90], yield a
performance of about

    
p n( ) =

p 1( )
0.7n + 0.3

,

                                                
11 Bitrates of 32 Mbit/s are planned by integrating a complete controller and microprocessor upon one

Chip.
12 AMD: Am9518, Am9568, Am28068, AmZ8086
13 These are: ECB, CBC, CFB, OFB, PCBC
14 Apple Macintosh IIfx (MC68030, 40 MHz, 32 Kbyte cache board, 80 ns RAM)
15 Toshiba T5100 (Intel 80386, 16 MHz)
16 Processor: Intel 80386, 33 MHz

Fig. 3-13 Performance of DES-Hardware



where p(1) denotes the performance of single encipherment DES. This is due to the fact that
the trailing permutation of a preceding encipherment is neutralized by the leading
permutation of the successive encipherment. Hence, only the leading permutation of the first
encipherment and the trailing permutation of the last encipherment have to be performed.
Thus, the performance of 3DES is p(3) = 0.41 × p(1)

Latest benchmarks of software implementations of IDEA suggest that it performs by a
factor of 1.5 or 2.0 faster than single DES on the same host.

3 . 5 . 4 RSA hardware implementations

Five of the fastest RSA chips are shown in Fig. 3-15. The bitrate refers to a general, pure
deciphering (i.e. large secret exponent, no redundancy predicate). Using the Chinese
remainder algorithm speeds up deciphering by almost the factor 4, but it is not known if the
chips use this shortcut17. The last entry gives an impression of what can be implemented
upon a Smart Card. (The number of bits processed per chip indicates how many chips have
to be cascaded in order to process blocks of larger size.)

avail-
abil i ty

technology
[µm]

chip size
[mm2]

#bits/chip clock
[MHz]

Enciphering
rate [Kbit/s]

(length of
m )

Cryptech
[Bric_90]

1988 GateArray ? 120 14 17 (512)

[Sedl_88] 1989 5 4.8 × 5.0 780 18 ? 195 (780)

VICTOR
[OrSA_91]

1990 2 10.0 × 10.0 512 20 97 (512)

[VVDJ_90] 1990 2 (CMOS) 9.3 × 8.7 1024 25 8 (1024)

CORSAIR
[QuWB_91]

1991 1.2 (CMOS) 1.7 × 1.7 512 6 0.34 (512)

Philips DX-Card 1992 ? 1.7 × 1.7 512 8 40.96 (512) ?

Fig. 3-15 Performance of RSA-Hardware

The 3rd and 5th entry are prototypes that are not commercially available. More descriptions
for RSA hardware can be found in [ORSP_87, Barr_87]. The former is an announcement
for a chip the latter makes use of Motorola's digital signal processor DSP56200.

3 . 5 . 5 RSA software implementations

The performances of Fig. 3-16 refer to pure RSA decipherment (i.e. no redundancy
predicate is used) at a modulus size of 512 bit.

A lot of other implementations are documented in the literature [BoRu_89, Comb_90,
Jung_87, LiPo_91]. The one by P. COMBA is comparable to the above mentioned work by
D. FOX, the other three are a good deal less efficient.

                                                
17 Often exact information about RSA hardware is held secret by designers and manufacturers
18 prime factors of the modulus are restricted to sizes of 340 bit and 440 bit, respectively.



avail-
abil i ty

supported
processor

precompu-
tation

[Kbyte]

modes of
operation

reference
machine

deciphering
rate

[ms/512bit]

RSA 1993
680x0

x ∈ {0…4}
0 ECB, CBC

Apple 19

Quadra 950
100.0

(= 5.0 Kbit/s)

R S A
[Fox_91]

1990
8086, 80x86
x ∈ {1…4}

0 ECB, CBC
386 Clone

20
49021

(= 1.05 Kbit/s)

Rescrypt
[Resc_91]

1991
8086, 80x86
x ∈ {1…4}

? ECB
386 Clone

22
330.3

(= 1.55 Kbit/s)

Fig. 3-16 Performance of RSA-Software

3 . 6 Standardization

DES was standardized within the U.S. [DES_77] to be used for unclassified data. G-DES
was not standardized in the U.S. No international standard exists for DES and G-DES.

Since 1986 the international standards organization (ISO) has deliberately not stan-
dardized particular encipherment mechanisms any more. Alternatively a register of such
mechanisms is run according to the rules proposed within [ISO9979]. One of these rules is,
that the register neither has to tell anything about how a mechanism works nor what level of
security it provides [Pric_88, Pric_90]. For example, the European project RIPE - the
RACE integrity primitive evaluation project has concentrated on integrity and authentication
only.

RSA is not standardized internationally either. However there are de-facto standards
[RSAD_91]. Also see [Kali3_91] for a nice overview.

Modes of operations for block ciphers are standardized in [ISO8372] and more generally
in [ISO10116].

4 MESSAGE AUTHENTICATION CODES

Informally, the purpose of a message authentication code (MAC) is to prove that the
real originator of a message is indeed the claimed one. However, the proof by an
authentication code will only convince someone who trusts in every other entity who also
knows the checking key for messages of the real originator. This includes the real originator
himself. The reason is that anyone able to check a message authentication code is at the same
time able to produce it. See also [Simm1_92] for an overview.

Mathematically, a message authentication code maps binary sequences to corresponding
“tags” in such a way that
• only someone who knows the encoding key or checking key can efficiently produce and

check tags.

                                                
19 Apple Macintosh Quadra 950 (MC68040, 30 MHz, 80 ns RAM)
20 Processor: Intel 80386, 33 MHz, 64 Kbyte cache board
21 8086 implementation: no support of 32-bit multiplication instruction (80386, 80486).
22 Processor: Intel 80386, 33 MHz



In order to achieve this property, the encoding operation is parametrized by an encoding key
whereas the checking operation is parametrized by a checking key. Let EKey, CKey suitable
domains of encoding keys and checking keys, and let M and T be the respective domains of
binary sequences (messages) and tags. Then, a message authentication code provides two
characteristic functional operations:

encode: EKey × M → T, check: CKey × M × T → {TRUE, FALSE},

and an indeterministic operation

(ek, ck) ← keygenerate(κ), where ek ∈ EKey, ck ∈ CKey

which on input a security parameter κ, outputs a pair (ek, ck) of matching encoding and
checking keys. A message authentication code yields for each such matching pair (ek, ck)
and every input m ∈ M

check(ck, m, encode(ek, m)) = TRUE

Fig. 4-1 gives the flow diagram for message authentication codes. Deterministic algorithms
are indicated by square boxes whereas indeterministic algorithms are given by capped
boxes.

A message authentication code is called secure if it resists at least a total break, i.e., if it is
infeasible for an adversary to figure out the encoding key. Sometimes, however, one will
not even tolerate weaker kinds of breaks like the following in order of decreasing severity
[GoMR_88]:
universal break: figure out an efficient encoding algorithm which is functionally

equivalent to encodeD,
selective forgery: forge a tag for some message chosen by the adversary,
existential forgery: forge a tag for any one message, even a random or non-sensical one.

Note: The security of a well-designed message authentication code does NOT rely
upon the secrecy of its algorithms encode and check, but solely upon the secrecy of
its encoding and checking keys.

key-
generateE

encodeEcheckE

ek

ck “=” ek

m t = encode( ek, m) m

m

κ

Fig. 4-1 Message Authentication Code



Message authentication codes are symmetric cryptographic mechanisms, i.e., it is easy to
compute the matching encoding key from a given checking key. Hence, encoding keys and
checking keys are secret keys.

Analogous to digital signature mechanisms (chapter 5), message authentication codes
can be described as compositions of a hash mechanism (chapter 6) and a core
authentication mechanism. This approach is adopted because it profits by independent
cryptologic research on hash mechanisms. Furthermore, it allows to design message
authentication codes more appropriately to meet specific needs.

4 . 1 Proposed mechanisms

The following proposals provide the desired optimum with respect to security: a provably
secure message authentication code. Furthermore, an alternative mechanism is provided
whose security rests on an ad-hoc assumption. Chapter 4.1.1 precisely introduces how
message authentication codes are constructed from core authentication mechanisms (chapter
4.1.2) and hash mechanisms (chapter 6.1.2 and 6.1.3). Fig. 4-2 suggests combinations of
the core authentication mechanism and hash mechanisms.

core authentication
mechanism D

hash
mechanisms

CW sDES, sIDEA

CW sCW1

Fig. 4-2 Proposal how to combine core authentication mechanisms with hash mechanisms

On the one hand, the core authentication mechanism CW provides unconditional security
only if it is combined with a 2-universal hash mechanism like sCW1. On the other hand, it
is highly efficient and may thus be combined with faster hash mechanisms like sDES or
sIDEA.

4 . 1 . 1 Composition of message authentication codes

Definition: Let H, D be a hash mechanism and a core authentication mechanism. Then, a
message authentication code is defined by the three operations:

encodeH,D: EKeyD × HKeyH × {0,1}+ → TD

encodeH,D(ek, hk, m) := ecdD(ek, hashH(hk, m))

checkH,D: CKeyD × HKeyH × {0,1}+ × TD → {TRUE, FALSE}

checkH,D(ck, hk, m, t) := chkD(ck, hashH(hk, m), t)

where hk ← keygenH is some hashing key, and (ek, ck) ← keygenD is some pair of
matching encoding, checking keys.

(hk, ek, ck) ← keygenerateH,D (κ)

where the key generation works by choosing hk by applying keygenH, and by inde-
pendently choosing (ek, ck) by applying keygenD.



4 . 1 . 2 CW

In 1981, LAWRENCE CARTER and MARC WEGMAN published a message authentication
code provably secure against the strongest possible attack. After the names of its dis-
coverers, the original mechanism is referred to as CW. See the original work [CaWe_79,
WeCa_81].

Definition: CW core authentication
Let κ ∈ I N be a security parameter, mb ∈ {0,1}κ, t ∈ {0,1}κ, be a message block and a
tag, respectively, and B be an upper bound for the number of tags that can be produced
by one encoding key. Encoding and checking signatures is defined as follows

ecdCW(ek, mb) := ri ⊕ mb,

chkCW(ck, mb, t) := ri ⊕ mb = ? t

where ek = ck = (r1, r2, .., rB). CW keys are generated as follows:

(r1, r2, .., rB) ← keygenCW(κ, B)

where each ri, i ∈ {1, 2, .., B} is uniformly randomly chosen from {0,1}κ.

4 . 2 Choice of parameters

There is one primary security parameter τ relevant for any core authentication mechanism D.
τ determines the cardinality of the domain TD of possible tags. Unconditionally secure
MACs yield a forging probability of 2–τ and require a hashing key domain of cardinality at
least 2–2τ [GiMS_74]. Some mechanisms provide additional or optional parameters. Fig. 4-
3 provides a range of proposed values for each core signature mechanism. Before picking
some parameter chapter 4.4 should be consulted.

D ττττ  [bit] b  [#tags]

CW {50, .., 100} > 0

Fig. 4-3 Security parameters proposed for the core signature mechanisms

4 . 3 Adversary models

Attacks are called active if the adversary is able to use the victim as an oracle by asking him
questions and receiving his answers (typically without the victim noticing to be under
attack). Otherwise, they are called passive. A passive attack against a message
authentication code can be a

known-message attack: the adversary is aware of some pairs (m1, t1), (m2, t2),… of
corresponding messages and corresponding tags.

Furthermore, active attacks are classified into:

directed-chosen-message attack: the adversary performs a known-message attack
except that he himself chose the messages m1, m2… before.

adaptive-chosen-message attack: the adversary performs a directed-chosen-message
attack, except that he did not have to choose all the messages m1, m2… in advance, but



rather could have chosen them one after the other depending on the tags he obtained
before.

4 . 4 Cryptanalysis

Details about differential cryptanalysis of message authentication codes based on block
ciphers like DES or IDEA can be found in [OhMa_93].

4 . 4 . 1 CW

The probability of a successful existential forgery of CW is 2–τ. This holds even under the
most serious attack (i.e. adaptive-chosen-message). The security is unconditional, i.e., it
relies on no further assumptions.

4 . 5 Performance

For both message authentication codes the performances can be taken from the underlying
hash mechanisms (chapter 6.5). This is because the MAC based on sDES or sIDEA does
not need a core authentication mechanism at all, and the MAC based on sCW1 employs a
highly efficient core authentication mechanism.

4 . 6 Status of standardization

DES based message authentication codes are standardized in [ISO9797, ISO8731].

5 DIGITAL SIGNATURE MECHANISMS

Informally, the purpose of a digital signature mechanism is to prove that the real
originator of a message is indeed the claimed one. In contrast to authentication codes, the
proof by a digital signature will convince everyone who only trusts in the real originator
himself. In general, anyone able to verify a digital signature is NOT able to produce it.

Mathematically, a digital signature maps binary sequences to corresponding “signatures”
in such a way that
• only someone who knows the signature key can efficiently compute signatures,
• anyone who knows the matching verification key can verify those signatures, but cannot

produce a signature by himself.
Unlike the authentication codes (chapter 4), digital signatures can be employed for a non-
repudiation service. To this end, independent “courts” must be provided which must have
reliable access to the verification keys. This might be achieved by some registration process
that every user participant has to pass.

In order to achieve the above properties, the signature operation is parametrized by a
signature key whereas the verification operation is parametrized by a verification key. Let
SKey, VKey be suitable domains of signature keys and verification keys, and let M and S
be respective domains of binary sequences (messages) and signatures. Then, a digital
signature mechanism provides two characteristic operations:

sign: SKey × M → S,

verify: VKey × M × S → {TRUE, FALSE},



and an indeterministic operation

(sk, vk) ← keygenerate(κ), where sk ∈ SKey, vk ∈ VKey

which on input a security parameter κ, outputs a pair (sk, vk) of matching signature and
verification keys. A digital signature mechanism yields for each such matching pair (sk, vk)
and every input m ∈ M

verify(vk, m, sign(sk, m)) = TRUE

Fig. 5-1 gives the flow diagram for digital signature mechanism. Deterministic algorithms
are indicated by square boxes whereas indeterministic algorithms are given by capped
boxes. In the sequel, these boxes will be refined to a certain extent. According to Fig. 5-1
refinements of verifying and signing are shown on the left hand side and right hand side,
respectively.

A digital signature mechanism is called secure if it resists at least a total break, i.e., if it is
infeasible for an adversary to figure out the signature key. Sometimes, however, one will
not even tolerate weaker kinds of breaks like the following in order of decreasing severity
[GoMR_88]:

key
-generate

signverify

sk

vk

m s  = sign(sk , m) m

m

κ

Fig. 5-1 Flow diagram for digital signature mechanisms

universal break: figure out an efficient signature algorithm which is functionally
equivalent to sign,

selective forgery: forge a signature for some message chosen by the adversary,
existential forgery: forge a signature for any one message, even a random or non-

sensical one.

Note: The security of a well-designed digital signature mechanism does NOT rely
upon the secrecy of its algorithms sign and verify, but solely upon the secrecy of its
signature keys.

Digital signature mechanisms are asymmetric cryptographic mechanisms, i.e., it is infeasible
to compute the matching signature key from a given verification key. Hence, signature keys
are private keys whereas verification keys are public keys.



In order to achieve digital signature mechanism that produce signatures whose lengths
do not depend on the lenghts of the messages signed, it is recommended to employ hash
mechanisms (chapter 6). The operations of such signature mechanisms can be described as
compositions of the hashing operation of a hash mechanism H and the appropriate
operations of a core signature mechanism G. This approach is adopted because it
profits by independent cryptologic research on the more elementary mechanisms.
Furthermore, it allows to design signature mechanisms more appropriately to meet specific
needs.

Fig. 5-2 gives the flow diagram of the key generating operation, the verifying and the
signing operation of a digital signature mechanism which employs a hash mechanism.

signG,HverifyG,H

core-
sign

G

hash
H

core-
verify

G

hash
H

key-
generateG,H

keygen
G

keygen
H

vkG

hk H

sk G hkH

hkHskG

s =
signG,H(sk G, hkH, m)

mm

hkHvkG

T

Fig. 5-2 Flow diagram for digital signature mechanisms that employ a hash mechanism

5 . 1 Proposed mechanisms

The following proposals provide the desired optimum with respect to security: a provably
secure digital signature mechanism. Furthermore, an alternative mechanism is provided
which is not known to be equally secure, but is more popular. Chapters 5.1.1 and 5.1.2
propose two signature mechanisms. Fig. 5-3 suggests which hash mechanisms (chapter 6)
should be used for which core signature mechanism.

core signature
mechanism G

hash
mechanisms H

GMR pDAM

R S A
pDAM,

wDES, wIDEA

Fig. 5-3 Proposal how to combine core signature mechanisms with hash mechanisms

The decision which hash mechanism to employ for RSA signatures depends on the overall
security policy and on the performance requirements. In general, it is recommended to
utilize some hash mechanism whose security relies on at least no other assumptions than the
security of RSA does. This, e.g., applies to the hash mechanism by IVAN DAMGÅRD.



However, if large messages need to be signed and security is not the only issue one of
the faster hash mechanisms based on DES or IDEA can be used.

5 . 1 . 1 GMR

In 1984, SHAFI GOLDWASSER, SILVIO MICALI, and RONALD RIVEST first published a
digital signature mechanism provably secure against the strongest possible attack as far as
one of the most thoroughly investigated complexity theoretic assumptions holds true (see
chapter 5.3). After the names of its discoverers, the original mechanism has been referred to
as GMR. It has subsequently been improved and demonstrated to be approximately as
efficient as RSA (chapter 5.1.3). See the original work [Damg_88, GoMR_88, FoPf_91].

Note: Implementations of GMR require a multiple precision integer arithmetic
(MPIA) in order to process numbers of 100 up to 400 decimal digits depending on
the security parameter κ chosen.

Definition: GMR core signature
Producing and verifying signatures and generating keys is defined by the algorithms
signGMR,pDAM, and verifyGMR,pDAM, keygenerateGMR,pDAM, respectively. Two auxiliary
functions f: {0,1}β × I N → I N, lp2: I N0 → I N0 and a probabilistic algorithm d(•) are
needed. They are explained below.

Signing: The signing operation

s := signGMR,pDAM(sk, hk, m),

takes three inputs, the private signing key sk, the hashing key hk for the Damgård hash
mechanism pDAM (cf. chapter 6.1.7), and the message m. It produces the digital
signature s = (nr’, S), a number nr’ ∈ {0, .., Θ–1}, and a (θ+1)×2 matrix of integers.
The signing key sk = (p, q, nr, M) consists of two primes p and q, a counter nr ∈ {0,
.., Θ–1} of signatures produced by sk so far, and a (θ+1)×3 matrix M of integers. The
signing algorithm is as follows:
begin {of signGMR,pDAM}

if (2θ < nr) then
abort operation since no more signatures can be produced from this sk.

Mθ+1,2 ← d(p•q); { leaf signature }
Mθ+1,0 := hashpDAM(hk, m, Mθ+1,2); { leaf reference }
L := lp2(nr)
For l:= θ downto L + 1 do begin

Ml,1 ← d(p•q); { right child }
Ml,2 ← d(p•q); { node signature }
Ml,0 := f(p•q, Ml+1,0| |Ml+1,1, Ml,2); { node reference }

end; { of For..}
(ML,0, ML,1) := (ML,1, ML,0); { exchange entries }

If (L = θ) Then { leaf signature }
ML,2 := f–1(p, q, ML+1,0, ML,0);
Else { node signature }
ML,2 := f–1(p, q, ML+1,0| |ML+1,1, ML,0);

signGMR,pDAM := (nr, S), where Si,0 = Mi,1, Si,1 = Mi,2) for all i ∈ {0, ..,  θ + 1}



nr := nr + 1;
end; {of signGMR,pDAM}

Verifying: The verifying operation

T := verifyGMR,pDAM(vk, hk, m, s)

takes four inputs, the public verification key vk, the hashing key hk for the Damgård
hash mechanism pDAM (cf. chapter 6.1.7), the signed message m, and the signature s.
It outputs T = TRUE if and only if s is a correct signature for m. The verification key vk
= (n, pr) consists of a modulus n, and a public reference pr. The signature s = (nr, S)
consists of a number nr ∈ {0, .., Θ–1}, and a (θ+1)×2 matrix S of integers. The
verifying algorithm is as follows:  
begin {of verifyGMR,pDAM} { declare a as an integer variable}

if (2θ < nr) then
abort operation since no more signatures can be produced from this sk.

a := hashpDAM(hk, m, Sθ+1,1); { leaf reference }
a := f(n, a, Sθ,1); { leaf node reference }
For l:= θ–1 downto 0 do begin

If odd(nr, θ – l – 1) then
a := f(n, Sl+1,0| |a, Sl,1) { take left child from signature}
Else
a := f(n, a| |Sl+1,0, Sl,1) { take right child from
signature}

end; { of For..}
verifyGMR,pDAM := (a = ? pr)
nr := nr + 1;

end; {of verifyGMR,pDAM}

Key generation: The key generating operation

(sk, vk) ← keygenGMR,pDAM(κ, θ)

takes two inputs: the security parameter κ, and the capacity parameter θ. It computes a
secret signing key sk = (p, q, hk, θ, nr, M) and a public verification key vk = (n, hk,
θ), such that

• (p, q, n) :∈R Tκ,10,20,R38,R78, where
R38 = {p ∈ I N|p ≡ 3 (mod 8)} and R78 = {p ∈ I N|p ≡ 7 (mod 8)},

• nr := 0,
• Mi,j := 0 for all i ∈ {0, .., θ + 1}, j ∈ {0, .., 2},
• hk ← keygenpDAM(κ–1).

The knowledge of the prime factors p and q enables the signer to efficiently compute f–1

(and f) whereas knowledge of n = p•q enables a verifyer to only compute f efficiently.
The counter nr is global to its corresponding signing key sk. It indicates how many
signatures have been produced by sk so far. The matrix M stores those parts of
previously produced signatures the signer can use for subsequent signatures.



The function odd(x, i) takes two non-negative integers with i ∈ {0, .., k}, k = len(x)–1,
and returns TRUE if and only if the i-th bit xi of the binary representation of x = xkxk–1..x0

is 1.

The function lp2(x) takes a non-negative integer x and returns the “inverted” index of the
least significant 1 in the binary representation of x = xkxk–1..x0. A possible implementation
is:

begin {of lp2}
k := 0;
while (k < len(nr)) and (not odd(x, k)) do k := k + 1;
lp2 := len(nr) – k;

end; {of lp2}

The function f(n, m, x) takes an integer n, the product of two primes, an arbitrarily long
binary string m and an integer x ∈ Z Zn , and returns a hash value according to the following
algorithm:

begin {of f} { declare a as an integer variable}
a := 4m x2len(m)

 (mod n);
if (a < n/2) then f := a else f := n – a;

end; {of f}

The function f–1(fpri, m, y) is the inverse of f(fpub, m, •), i.e., f–1(fpri, m, f(fpub, m ,
x)) = x, for every corresponding pair (fpri, fpub) of keys.

begin {of f–1} { declare a as an integer
variable}
ep := ((p+1)/4)len(m) (mod p–1)
eq := ((q+1)/4)len(m) (mod q–1)
a := cra(4–ep•rev(m) yep (mod p), 4–eq•rev(m) yeq (mod q));
if (a < n/2) then f–1 := a else f–1 := n – a;

end; {of f–1}

The algorithm d(n) chooses a random element from Z Zn , such that d < n/2 and the Jacobi
Symbol (d/n) = +1.

begin {of d} { declare a as an integer variable}
a :∈Ρ  Z Zn ;
a := a2 (mod n);
if (a < n/2) then d := a else d := n – a;

end; {of d}

5 . 1 . 2 RSA

In 1978, RONALD RIVEST, ADI SHAMIR, and LEONHARD ADELMAN published the first
digital signature mechanism, but could not base its proof of security upon some thoroughly
investigated complexity theoretic assumption (see chapter 5.3). According to the names of
its inventors, the original mechanism is called RSA. The mechanism has become quite
popular and implementations of it are widely available nowadays. The original mechanism
has subsequently been improved by [QuCo_82, Denn_84, Damg_88].



Note: Implementations of RSA require a multiple precision integer arithmetic
(MPIA) in order to process numbers of 100 up to 400 decimal digits depending on
the security parameter κ chosen.

Definition: RSA core signature
Producing and verifying signatures and generating keys is defined by the algorithms
signRSA,H, and verifyRSA,H, keygenerateRSA,H, respectively.

Signing: The signing operation

s := signRSA,H(sk, m),

takes two inputs, the private signing key sk, and the message m. It produces the digital
signature s, an integer. The signing key sk = (p, q, d) consists of two primes p and q,
and a private exponent d. The signing algorithm is as follows:
begin {of signRSA, H} { declare a as an integer variable}

a := hashH(m);
signRSA, H := cra(ad (mod p), ad (mod q));

end; {of signRSA, H}

Verifying: The verifying operation

T := verifyRSA, H(vk, m, s)

takes three inputs, the public verification key vk, the signed message m, and the
signature s. It outputs T = TRUE if and only if s is a correct signature for m. The
verification key vk = (n) only consists of an integer modulus n. The signature s is an
integer. The verifying algorithm is as follows:  
begin {of verifyRSA, H} { declare a as an integer variable}

a := hashH(m);
verifyRSA, H := (se (mod n) = ? m);

end; {of verifyRSA, H}

RSA keys are generated as follows:

(m, (p, q, d)) ← keygenRSA(κ)

begin {of keygenRSA}

(p, q, m) :∈Ρ Tκ,10,20,RSAPrimes,RSAPrimes,, where
RSAPrimes = {p ∈ I Phard|p' ∈ I Phard for at least one factor p' of p–1},

e := 3;
d := e–1 (mod (p–1)(q–1));

end; {of keygenRSA}

Note: Implementations of RSA require a multiple precision integer arithmetic
(MPIA) in order to process numbers of 100 up to 400 decimal digits depending on
the security needed.



5 . 2 Choice of security parameter(s)

There is one primary security parameter κ relevant for any core signature mechanism G. κ
determines the cardinality of the domain SKEYG of signature keys. Some mechanisms
provide additional or optional parameters. Fig. 5-4 provides a range of proposed values for
each core signature mechanism. Before picking some parameter chapter 5.4 should be
consulted.

G κκκκ  [bit] b  [#sign's]

GMR {512, .., 1024} > 0

R S A {512, .., 1024} –

Fig. 5-4 Security parameters proposed for the core signature mechanisms

5 . 3 Adversary models

Attacks are called active if the adversary is able to use the victim as an oracle by asking him
questions and receiving his answers (typically without the victim noticing to be under
attack). Otherwise, they are called passive. Passive attacks against a digital signature
mechanism can be classified into

key-only attacks: the adversary only knows the verification key (public key) of the
victim.

known-message attack: the adversary is additionally aware of some pairs (m1, s1), (m2,
s2),… of corresponding messages and corresponding signatures.

Furthermore, active attacks are classified into:

directed-chosen-message attack: the adversary performs a known-message attack
except that he himself chose the messages m1, m2… before.

adaptive-chosen-message attack: the adversary performs a directed-chosen-message
attack, except that he did not have to choose all the messages m1, m2… in advance, but
rather could have chosen them one after the other depending on the signatures he
obtained before.

5 . 4 Cryptanalysis

The fundamental results are that digital signature mechanisms unconditionally secure for
signers and verifiers are inefficient [ChRo_91]. However, there are digital signature
mechanisms provably unconditionally secure for signers and computationally secure for
verifiers and vice versa. The former are referred to as classical digital signature
mechanisms whereas the latter are called fail-stop digital signature mechanisms. For
both kinds of mechanisms there are efficient implementations [GoMR_88, HePe_93]. Either
of their proofs of security only relies on one of the classical complexity theoretic
assumptions: factorization of integers or discrete logarithm. More efficient classical digital
signatures have been proposed whose security relies on some ad-hoc assumptions, e.g.,
DSS.



5 . 4 . 1 GMR

The security of GMR against existential forgery is proved to be equivalent to the classical
complexity theoretic assumption of integer factorization. This holds even under the most
serious attack (i.e. adaptive-chosen-message).

5 . 4 . 2 RSA

The security of core RSA against a total break has not been proven to be equivalent to one of
the classical complexity theoretic assumption, not even if adversaries are restricted to
passive attacks. Hence, the proof of security must be said to rest on an ad-hoc assumption,
the RSA assumption. Hence, a universal forgery might also be possible. However, since
the publication of RSA in 1978 no indication has come up that the RSA assumption might
be wrong. Some passive attacks against RSA have been proposed in the literature
[SiNo_77, Herl_78, Berk_82]. But none of them succeeds as [Rive_78, Rive_79,
Berk_82] show. So far, no other attack has come up that is more likely to totally break core
RSA than factorizing the modulus.

Core RSA is vulnerable to a selective forgery. A selective-chosen-message attack can
make use of the homomorphism property of core RSA [Denn_84]. This attack does not
apply if a hash mechanism is first applied to the message (chapter 5.1.1). However, the
overall security of the RSA digital signature mechanism relies on the same ad-hoc
assumption as core RSA.

Small exponents of RSA give rise to various passive attacks [Wien1_90] which can be
avoided by choosing it as proposed.

5 . 4 . 3 How long does it take to forge a signature?

For the digital signatures proposed by chapter 5.1.1 no attacks are known that yield an
existential, selected, or universal forgery in less time than a total break would cost. For a
total break no better attack is known than factorization of the modulus of the core signature
mechanism. (The key of the hash mechanism is publicly known.) The expected time to
factor a modulus of given length can be taken from chapter 3.4.5.

5 . 4 . 4 Valuation of the proposals

There are other digital signature mechanisms like the one suggested by TAHER ELGAMAL

[ElGa_85] or its variants [Schn_91, DSS1_91]. DSS is not proposed because it is at most
as secure as core RSA composed with a hash mechanism based on DES or IDEA, and the
first proposal (for DSS) fixes the key size to k = 512 bit. This, in particular, seems to be too
short to be secure [Rive4_91] and additionally prohibits to adapt the key size to different
security requirements. Recent proposals let the key size vary up to 1024 bit. This would
prevent state of the art attacks in 1992, but will be too small to achieve integrity over a
period of say 25 years [Rive4_91].

5 . 5 Implementations and their performance

Performances of signature mechanisms should be compared carefully. The signing and
verifying operation of the RSA signature mechanism (E = DAM, G = RSA) and of the RSA
core signature mechanism have asymptotically the same complexity as GMR. However, for
short messages they differ significantly. This is demonstrated by a comparison of the



number mm(l) of modular multiplications 23 of the respective algorithms. The complexity
of modular multiplication is the dominating measure for at least software implementations.

For fixed modulus size κ = 512 bit, Fig. 5-5 compares the number of modular multi-
plications for RSA with and without a provably collision free hash function and for GMR.
Modular multiplications are done with respect to two sizes of modulus, κ bit and (κ div 2)
bit. This comparison is based on a modular multiplication algorithm that has quadratic
complexity in the size of the modulus. Hence, the total number mm(κ div 2) to sign/verify is
determined by using the equality

mm(2 × (κ div 2)) = 4 × mm(κ div 2) 24.

len denotes the length of a message in bit, b denotes a logarithmic bound for the maximum
number B = 2b of signatures that can be generated from a single secret key as introduced in
chapter 5.1.2.

m m (κκκκ  div 2) s i g n ver i fy

RSA, DAM Error! • len + 1.5 Error! • len

core RSA Error! • len + 502.5 Error! • len + 1940

GMR Error! + 5034.7 4 • len + 512 ( )2b+1  

Fig. 5-5 Number of modular multiplications for RSA and GMR

This means that, for example, RSA performances (without a hash mechanism) may be
almost linearly scaled for different lengths of messages whereas this does not hold for GMR
performances.

To get the results as comparable as possible, the moduli and the signatures of both
mechanisms should be fixed roughly to equal size. For a bound B = 210 = 1024 a GMR
signature is 11264 bit long. Thus the RSA signature was chosen to be 8192 bit = 1 Kbyte
long which results in a message length len = 8192 bit. (This length is also taken in the
literature sometimes). Hence all following performances refer to a modulus length of 512
bit, message length len = 8192 bit, signature bound (for GMR) B = 1024.

So far, only mechanism parameters were fixed. Hardware- and software performances
depend on many other parameters. Hardware products usually give some of them (see the
tables below) and keep others secret. Software performances depend heavily on the host
machine used for the benchmark etc. Some of the details are found in the following
chapters.

5 . 5 . 1 RSA hardware implementations

Six of the fastest RSA chips are given in the following table. Detailed descriptions about
RSA hardware was sometimes not available; for example, if the chips are easy to use for
digital signatures, if they have implemented any hash mechanism or if they make use of the
chinese remainder algorithm (CRA) while signing. Mostly, performance of hardware

                                                
23 l denotes the size of the underlying modulus in bit
24 For a detailed description of the underlying mulitple precision arithmetic see [Fox_91].



is given by the deciphering bitrate or by the time needed to sign an RSA block. If the bitrate
was given it was converted into the (average) time needed to sign one RSA block. The
following table gives the state of the art of RSA hardware, but comparing the performances
has to take into account at least three parameters:

i) clockrate, ii) chip size, iii) size of modulus .
(The number of bits processed per chip indicates, how many chips have to be cascaded in
order to process blocks of larger size.)

avail-
abil i ty

technology
[µm]

chip
s ize
[mm

2
]

#bi ts
/

chip

clock
[MHz]

sign one block
time [ s ] b i t r a t e

[ K b i t / s ]
(size of modulus)

Cryptech [Bric_90] 1988 Gate Array ? 120 14 0.482 (512) 1.062

[Sedl_88] 1989 5 4.8 × 5.0 780
25

? 0.042 (780) 18.571

VICTOR
[OrSA_91]

1990 2 10.0×10.0 512 20 0.0845 (512) 6.059

[VVDJ_90]
1990

2
(CMOS)

9.3 × 8.7 1024 25
1.024 (1024) 1.000

CORSAIR
[WaQu_91]

1991
1.2 (CMOS) 1.7 × 1.7 512 6 1.5 (512)

without CRA
0.341

Philips DX-Card 1992 ? 1.7 × 1.7 512 8 0.4 (512) 1.280

Fig. 5-6 Performance of RSA-Hardware

5 . 5 . 2 RSA software implementations

Performances were calculated while signing/verifying 16 blocks of message (len = 16 × 512
bit = 8192 bit = 1 Kbit) at a modulus size of 512 bit. No hash mechanism is used. Signing
is done by using the chinese remainder algorithm.

The verifying was done using a large public exponent as it was suggested for RSA
originally. Choosing the public exponent smaller, say of size 15…20 bit would increase the
verifying rate by a factor of 10 or more (assumed modulus size is 512 bit). This applies to
both hardware and software implementations. No attacks were found whose probability of
success increases significantly if applied to a verification exponent of 3.

avail-
abil i ty

supported
processor

precom-
putation
[Kbyte]

reference
machine

sign one block
verify one block

time [s] bitrate [Kbit]
(size of modulus)

RSA 1993
680x0

x ∈ {0…4}
0

Apple 26

Quadra950
2.05 (512)
6.65 (512)

3.948
1.232

                                                
25 This is achieved under the reasonable restriction that the prime factors of the modulus are of sizes 340

bit and 440 bit respectively.
26 Apple Macintosh Quadra 950 (MC68040, 30 MHz, 80 ns RAM)



R S A
[Fox_91]

1991
80x86

x ∈ {1…4}
0

386 Clone
27

9.095 (512)
30.74 (512)

0.901
0.266

Rescrypt
[Resc_91]

1991
80x86

x ∈ {1…4}
?

386 Clone
28

5.28 (512)
≈ 18 (512)

1.552
0.455

Fig. 5-7 Performance of RSA-Software

5 . 5 . 3 GMR hardware Implementations

So far, no actual hardware implementation of the GMR signature mechanism is known to
the author.

5 . 5 . 4 GMR software Implementations

Times are given to sign 8,192 bit ≈ 1 Kbyte of message/to verify the signature of 8,192 bit
of message at a modulus size of 512 bit. The upper bound B of possible signatures per key
was chosen to be B = 1024 for comparability reasons.

avail-
abil i ty

supported
processor

precom-
putation
[Kbyte]

reference
machine

sign one block
verify one block

time [s] bitrate [Kbit]
(size of modulus)

GMR
[FoPf_91]

1993
680x0

x ∈ {0…4}
0

Apple 29

Quadra950
1.6 (512)

8.26 (512)
5.120
0.990

GMR
[Fox_91]

1991
80x86

x ∈ {1…4}
0

386 Clone
30

3.905 (512)
61.08 (512)

2.098
0.134

Fig. 5-8 Performance of GMR-Software

5 . 6 Standardization

An international standard for digital signature mechanisms is currently being prepared. One
first proposal is the digital signature standard [DSS_91]. So far there are de-facto standards
developed by companies as RSA Data Security, Inc. A good overview is found in
[Kali3_91].

6 HASH MECHANISMS

Hash mechanisms are an important cryptographic tool. Informally, the purpose of a hash
mechanism H is to map some long binary sequence to some hash value of fixed length in
such a way that it is hard to find another sequence which maps to the same hash value. In

                                                
27 Processor: Intel 80386, 33 MHz, 64 Kbyte cache board
28 Processor: Intel 80386, 33 MHz
29 Apple Macintosh IIfx (MC68030, 40 MHz, 32 Kbyte cache board, 80 ns RAM)
30 Processor: Intel 80386, 33 MHz, 64 Kbyte cache board



order to achieve this property, some hash mechanisms employ a cryptographic encipherment
mechanism. Let M, HV be the respective domains of binary sequences and hash values. In
general, a hash mechanism provides one characteristic functional operation (usually called a
hash function)

hash: {HKey × HV ×} M → HV

Some hash mechanisms also take a hashing key from the set HKey or an initial value from
the set HV as an optional input. If the mechanism requires a hashing key to be input into the
hash operation, it also provides an inderterministic key generating operation

hk ← keygenerate(η)

which on input a security parameter η outputs some hashing key.
In the literature hashing is sometimes called “compression” because it potentially

shortens the input sequence. However, the term compression might be misleading because
i) for input sequences shorter than the hash values, hashing in effect expands the input
sequence, and ii) in coding theory the term compression is reserved to mappings which
preserve the information of their input, e.g, by eliminating redundancy. However, hashing
does not preserve the information of input, i.e., in general, the input cannot be obtained
from its hash value in an information theoretic sense.

Two kinds of hash mechanisms are distinguished: A keyed hash mechanism is
parametrized by either a private key (if the underlying encipherment mechanism E is
symmetric) or a public key (if E is asymmetric). A one-way hash mechanism is not
parametrized by a key. Hence, one-way hash mechanisms can be interpreted as special cases
of keyed hash mechanisms, namely ones with a constant key.

Fig. 6-1 gives the flow diagram for hash mechanisms. Deterministic algorithms are
indicated by square boxes whereas indeterministic algorithms are given by capped boxes.

Besides the above sketched modular design of hash mechanisms, there are some
monolithically designed one-way hash mechanisms, e.g. MD4, MD5, SHS [Rive2_91,
Rive_91, SHS_92]. The former two were broken by [BoBo_92, BoBo_94], [Bers_93],
respectively. The latter has still faced too little cryptanalysis to be proposed by now.

It is proposed to employ iterated hash mechanisms. They are constructed by either a
linear or a logarithmic iteration of some hash round mechanism [LaMa_93]. The hash round
mechanism in its turn might employ an encipherment mechanism (chapter 3).



hashH

mhv

key-
generateH

hashH

hk

mhv

η

key-
generateH

hashH

hk

mhv

sv

η

one-way hash secret keyed hash public keyed hash

Fig. 6-1 Flow diagrams for hash mechanisms

The modular construction implies that iterated keyed hash mechanisms can only be
obtained by keyed hash round mechanisms. Analogously, iterated one-way hash
mechanisms are obtained by one-way hash round mechanisms. Fig. 6-2 summa-
rizes which of the possible combinations are proposed and what they are called.

hash mechanism
H

(encipherment E)

one-way secret keyed public keyed

linear wDES (DES)
sDES (DES),

sIDEA (IDEA)
pDAM (DAM31)

logarithmic — sCW1 (CW1) —

Fig. 6-2 Proposal how to iterate round functions based on different encipherment

mechanisms

Since the proposed encipherment mechanisms are block oriented binary sequences of
arbitrary length first have to be padded before they can be fed to the proposed iterated hash
mechanisms.

6 . 1 Proposed Mechanisms

Chapter 6.1.1 to 6.1.4 describe how one-way hash round mechanisms, secret keyed hash
round mechanisms, and public keyed hash round mechanisms are iterated. Chapter 6.1.5
defines the sequence padding. Finally, four hash round mechanisms are proposed: rndwDES

in chapter 6.1.6, rndsDES, rndsIDEA in chapter 6.1.7, and rndpDAM in chapter 6.1.8.

                                                
31 since DAM is not proposed as an encipherment mechanism in its own it is described in the context of

hash mechanisms rather than in chapter 3.1.



6 . 1 . 1 Iterated one-way hash mechanisms

Let H be a hash mechanism based on a block encipherment mechanism E (Fig. 6-2) with
PBE, CBE being equal domains of plaintext blocks and ciphertext blocks, i.e.,
B := PBE = CBE = {0,1}β,

S = B+ be the set of all binary sequences of length a multiple of β,
EKeyE be the set of encipherment keys of mechanism E, and let

padH: {0,1}+ → S, auxH: B → B, rndH: S × B → B

be a padding function, an auxiliary function, and a one-way hash round mechanism each
specific for the selected E. Then, the iterated one-way hash mechanism

hashH: S → B    for H ∈ { wDES }

is constructed by the linear iteration

hashH(padH(s)) := auxH(bn),

for all i ∈ {1, .., n} let bi := rndH(si, bi–1), and b0 := 

    

00L0
β −1

1231

where padE(s) = s1| |s2| |…| |sn ∈ S, bi ∈ B . The padding function padH is described in chapter
6.1.5, the auxiliary functions auxH and the one-way hash round mechanisms rndH are
proposed in chapter 6.1.6.

6 . 1 . 2 Iterated secret keyed hash mechanisms (linear construction)

Let H be a hash mechanism based on a block encipherment mechanism E (Fig. 6-2) with
PBE, CBE being equal domains of plaintext blocks and ciphertext blocks, i.e.,
B := PBE = CBE = {0,1}β,

S = B+ be the set of all binary sequences of length a multiple of β,
EKeyE be the set of encipherment keys of mechanism E, and let

padH: {0,1}+ → S, auxH: EKeyE × B → B, rndH: EKeyE × S × B → B

be a padding function, an auxiliary function, and a keyed hash round mechanism each
specific for the selected mechanism H. Then, the iterated keyed hash mechanism

hashH: HKeyH × S → B    for H ∈ { sDES, sIDEA }

is constructed by the linear iteration

hashH(hk, padH(s)) := auxH(hk, bn),

for all i ∈ {1, .., n} let bi := rndH(hk, si, bi–1), and b0 := ivH

where padH(s) = s1| |s2| |…| |sn ∈ S, bi ∈ B . The padding function padH is described in chapter
6.1.5.32 The auxiliary functions auxH and hash round mechanisms rndH are described in
chapters 6.1.7. The value of the variable ivH depends on the hash round mechanism H
actually chosen (see chapter 6.1.6).

                                                
32 It is clear from this construction, that the length η of the hash values equals the length β of the blocks

of ciphertext of the corresponding block encipherment mechanism E (HVH = CBE). E.g., employing E =
DES yields 64 bit hash values.



The generation of keys is defined as

keygenerateH = keygenE,

6 . 1 . 3 Iterated secret keyed hash mechanisms (logarithmic construction)

A highly secure hash mechanism is found in [CaWe_79, WeCa_81]. Its iteration is
somewhat more complicated than the linear one (chapter 6.1.2), but it is provably secure in
an information theoretic sense.

6 . 1 . 4 Iterated public keyed hash mechanisms

Let H be a hash mechanism based on a block encipherment mechanism E (Fig. 6-2) with
PBE, CBE being equal domains of plaintext blocks and ciphertext blocks, i.e.,
B := PBE = CBE = {0,1}β,

S = B+ be the set of all binary sequences of length a multiple of β,
EKeyE be the set of encipherment keys of mechanism E, and let

padH: {0,1}+ → S, auxH: EKeyE × B → B, rndH: EKeyE × S × B → B

be a padding function, an auxiliary function, and a keyed hash round mechanism each
specific for the selected mechanism H. Then, the iterated public hash mechanism

hashH: HKeyH × S × B → B,    for H ∈ { pDAM }

is constructed by the linear iteration

hashH(hk, padH(s), iv) := auxH(hk, bn),

for all i ∈ {1, .., n} let bi := rndH(hk, si, bi–1), and b0 := iv

where padH(s) = s1| |s2| |…| |sn ∈ S, bi ∈ B . The padding function padH is described in chapter
6.1.5. The auxiliary functions auxH and hash round mechanisms rndH are described in
chapters 6.1.8.

The generation of keys is defined as

keygenerateH = keygenE,

6 . 1 . 5 Padding of binary sequences

The following padding functions are proposed:

padH := pad(64, •) for H ∈ {wDES, sDES, sIDEA, sCW1},

padH = sfx ° pad(8, •) for H ∈ {pDAM},

The suffix-free encoding sfx (see below) is to be applied, since otherwise the hash round
mechanisms rndpDAM (chapter 6.1.7) could not be proved to be collision-free (chapter 6.4).
The padding function pad is defined in chapter 3.1.2.

Definition: On binary sequences of length a multiple of β the code sfx  is defined as
follows:

sfx: {{0,1}β}+ → {{0,1}β}+



sfx(s) := s| |

      

0
en−1

{ | |ln–1| |

      

1
en−2

{ | |ln–2| |…| |

      

1
e0

{ | |l0, where

n = 1 + len(s) div 2β–1 denotes the number of appended blocks,

ln–1| |ln–2| |…| |l0 = len(s), ln–1, ln–2, .., l0 ∈ {0,1}β-1, and

the extension bits en–2, .., e0 are 1, whereas en–1 = 0.

Informally, this code does the following. It writes the length of a sequence behind the
sequence in a field of length β. If the binary representation of the length of s does not fit into
this field further fields are appended. Hence, each field is leaded by an extension bit which
indicates if another field follows “to the left”.

Definition: A code f: A → B is called suffix-free iff
1) f is bijective and
2) no element of B is the suffix of another element of B.

Lemma 6.1 The code sfx is suffix-free.

Proof:

Assume there exist two different binary sequences s, s' such that

sfx(s') = s'| |e'n'–1| |l'n'–1| |e'n'–2| |l'n'–2| |…| |e'0| |l'0 is a suffix of

sfx(s) = s| |en–1| |ln–1| |en–2| |ln–2| |…| |e0| |l0.

Now, let ν = min(n, n'). Then for each i ∈ {0, 1, .., ν-1} one has e'i = ei and l'i = li be-
cause all these components have respective fixed lengths of 1 bit or λ-1 bit. By def-
inition of ν it follows that e'ν–1 = 0 and/or eν–1 = 0 and hence e'ν–1 = eν–1 = 0. Thus, ν is
the smallest such index and by definition of sfx it follows that n = n' = ν.

Hence, len(s) = len(s') and the assumption that sfx(s') is a suffix of sfx(s)) assure
that s' = s which is a contradiction to the precondition. ❏

6 . 1 . 6 One-way hash round mechanisms

A one-way hash round mechanism is proposed according to [PrGV_93, ISO10118-2].

Definition: Let s, b ∈ B be the set of blocks of plaintext of DES, then

rndwDES(s, b) := s ⊕ encDES(b, s)

auxwDES(b) := b

6 . 1 . 7 Secret keyed hash round mechanisms

Two high speed keyed hash round mechanisms are proposed according to [RIPE2_93].

Definition: Let ek ∈ EKeyDES, s, b ∈ B the set of blocks of plaintext of DES, then

rndsDES(ek, s, b) := s ⊕ encDES(ek, s ⊕ b)

auxsDES(ek, b) := encDES(ek ⊕ 
    
0xF0 F0 … F0

8
1 244 344 , b)

ivsDES := 
    
0x00 00 L 00

8
1 244 344

Definition: Let ek ∈ EKeyIDEA, s, b ∈ B the set of blocks of plaintext of IDEA, then



rndsIDEA(ek, s, b) := s ⊕ encIDEA(ek, s ⊕ b)

auxsIDEA(ek, b) := encIDEA(ek ⊕ 
    
0xF0 F0 … F0

16
1 244 344 , b)

ivsIDEA := 
    
0x00 00 L 00

8
1 244 344

6 . 1 . 8 Public keyed hash round mechanism

One provably secure keyed hash round mechanism is proposed according to [Damg_88].

Definition: Let ek ∈ EKEYDAM, s, b ∈ B be the set of blocks of “plaintext” of DAM, then

rndpDAM(ek, s, b) := as b
2 (mod m)

auxpDAM(ek, b) := b

(ek, dk) ← keygenDAM(κ)

where the input κ is a security parameter. The operation keygenDAM outputs an
enciphering key ek and a deciphering key dk. The latter is needed for special purposes
only.
begin {of keygenDAM} { declare a, a’ as integer variables}

β := 8; γ := 2β = 256; { For the selection of β also refer to chapter 6.2, 6.5}
(p, q, n) :∈Ρ Tκ,10,20,P34,P34, where P34 = {p ∈ I N|p ≡ 3 (mod 4)}.
a' := (a0', a1', .., aγ–1'), where the ai' are independently chosen from Z Zn

* .
a := (a0, a1, .., aγ–1), where ai := ai'

2 (mod n).
ek := (n, a); dk := (p, q, a)

end; {of keygenDAM}

6 . 2 Choice of security parameters

For H ∈ {wDES, sDES, sIDEA, sCW1} hashH provides no parameters. For H ∈ {pDAM}
it is proposed to select a security parameter κ ∈ {512, .., 768} and a block size β ∈ {1, . . ,
8} bit depending on the amount of memory available (cf. chapter 6.5).

6 . 3 Models of adversary control

Generally, hash mechanisms take three inputs: a cryptographic key ek, a binary sequence s
which is to be hashed and some initial value iv. Provided the key is not known to the
adversary, he might start the following attacks depending on which parameter he is free to
choose [LaMa_93].

Fix-start target: Given s and iv, find s' such that
s' ≠ s, but hash(ek, iv, s') = hash(ek, iv, s).

Free-start target: Given iv and s, find iv', s' such that
(iv', s') ≠ (iv', s), but hash(ek, iv', s') = hash(ek, iv', s).

Fix-start collision: Given iv, find s and s' such that
s' ≠ s, but hash(ek, iv, s') = hash(ek, iv, s).

Free-start collision: Find iv, iv', s, s' such that
(iv', s') ≠ (iv, s), but hash(ek, iv', s') = hash(ek, iv, s).



The following inclusions (Fig. 6-3) hold between these attacks. (  A ⊂ B, 

  

⊂
B

 both denote
that every attack of A is also an attack of B.)

  

fix−start target ⊂ fix−start collision
⊂ ⊂

free−start target ⊂ free−start collision

Fig. 6-3 Relations of attacks against hash mechanisms

Iterated one-way hash mechanisms and secret keyed hash mechanisms fix their initial values
ivH and hence are only subject to fix-start attacks. Public keyed hash mechanisms provide
the initial value as an additional input to the hash operation. Thus in general, they can be
subject to free-start attacks, too. In practice, however, a free start attack can only be
mounted if the application using the hash mechanism does not fix the initial value by itself.
For example, the core signature mechanisms (chapter 4) do not do so.  

6 . 4 Cryptanalysis

Since hash mechanisms give rise to more powerful attacks (free-start attacks) if their initial
values may be chosen by an adversary only hash mechanisms with fixed initial values are
proposed. It is an open question if suffix-free encoding is necessary to yield security against
the weaker fix-start attacks. At least no successful fix-start attack is presently known.
Hence, a suffix-free encoding is proposed only for hashDAM whose proof of security
requires the suffix-free encoding.

It is a difficult task to design secure, but efficient hash mechanisms. An excellent
overview over the history of broken hash mechanisms and a systematic synthesis of secure
ones is given by [PrGV_93]. This applies particularly to the keyed hash mechanism
proposed by [DaPr_84, DaPr_89] and the one-way hash mechanism standardized
[ISO9797]. For more detail also consult [PrGV2_93]. However, there can be no proof of
collision-freeness for hash mechanisms which are based on unproved encipherment
mechanisms. Hence, new suggestions for efficient iterated hash mechanisms must be
expected in the future. Under development are the construction of hash mechanisms whose
hash values are longer than the block size of the underlying block encipherment algorithm
[HLMW_93] and differential cryptanalysis of hash mechanisms [PrGV4_93].

The hash mechanism based on [Damg_88] is provably collision-free, i.e., secure against
fix-start collision attacks, under the assumption that factoring integers from T (chapter 2) is
computationally infeasible.

6 . 5 Performance

The hashing performance of hashH, H ∈ {pDAM, sDES, sIDEA} is approximately the
encipherment performance of the respective encipherment mechanism. The performance of
hashwDES additionally depends upon the time needed to convert a 64 bit DES key into its
corresponding 16 subkeys.

The “encipherment” operation of DAM costs one modular multiplication and one
modular squaring. Thus its performance depends upon the security parameter κ and also
upon the block size β. On the one hand, doubling β doubles the hashing performance (bits
hashed per second). On the other hand, the size of the hashing key ek is κ (1+2β), which is



exponential in β. For example, security parameter κ = 512 and β = 8 bit yields a hashing
rate of approximately 1 bit per time to compute 1.75 modular multiplications [Fox_91, ch.
I.5] and a key size of 1.5 Kbit.

6 . 6 Standardization

Still under consideration. [ISO10118, SHS_92]. [ISO9797] is no longer state of the art.

7 COMBINED MECHANISMS

Any of the mechanisms proposed by chapter 3 to 6 can be combined in order to yield several
properties for one input. Besides applying different mechanisms sequentially there are
sometimes equivalent, but more efficient solutions. These are called combined mechanisms.
Confidentiality and detectability of modification are an example for two cryptographic
building blocks whose joint functionality may be achieved by a special mechanism (chapter
7.1).

7 . 1 Iterated encipherment mechanisms with detection of modification

In order to simultaneously achieve confidentiality and detection of modification it is
proposed to operate the selected (symmetric or asymmetric) block encipherment mechanism
in   p  lain   c  ipher   b  lock   c  haining (PCBC) mode instead of CBC mode (chapter 3.1.3).
Also see [MeMa_82, pp. 69-71] who call this mode “block chaining using plaintext and
ciphertext feedback”. The security of PCBC is supposed to be that of CBC. The
performance of PCBC is almost that of CBC; it differs only by a small additive constant.

The primary operations encipher-dE, and decipher-dE of an iterated encipherment
mechanism with detection of modification are constructed as follows:

encipher-dE: EKeyE × P → C

encipher-dE(ek, p) := cb1| |cb2| |…| |cbn| |cbn+1,

where for all i ∈ {1, .., n+1}: cbi := enPCBC(ek, pbi, pbi–1, cbi–1), cb0 := 0,
pbi ∈ PBE, pb1| |pb2| |…| |pbn := enpad(β, redinsE(p)), pbn+1 := 0, β the length of plaintext
blocks of E according to ek.

decipherE: DKeyE × C → P × {TRUE, FALSE}

decipher-dE(dk, c) := (redchkE(depad(β, pb1| |pb2| |…| |pbn)), ok),

where for all i ∈ {1, .., n+1}: pbi := dePCBC(dk, cbi, cbi–1, pbi–1), pb0 := 0,
cbi ∈ CBE, cb1| |cb2| |…| |cbn := c, and ok:= TRUE iff pbn+1 = 0, β the length of plaintext blocks
of E according to dk.

The padding and depadding function (enpad, depad) are defined in chapter 3.1.2. The
reduncancy predicate (redins, redchk) is defined in chapter 3.1.3. Plain cipher block
chaining is defined below.

Definition: Let E be some block encipherment mechanism, β its respective block length.
Plain C    ipher B    lock C    haining (PCBC) is defined as follows.   



enPCBC: EKeyE × PBE × PBE × CBE → CBE,

enPCBC(ek, pb, pb', cb) := encE(ek, ((pb' + cb) mod 2β) ⊕ pb),

dePCBC: DKeyE × CBE × CBE × PBE → PBE

dePCBC(dk, cb, pb, pb') := ((pb' + cb') mod 2β) ⊕ decE(dk, cb)

decE encE

enmodedemode

dk
E

ek
E

cbi
pb

i

pbi–1 cbi–1

pb
i

pbi–1cbi–1

bitwise XOR addition mod 2β

Fig. 7-1 Flow diagram for the mode of operation according to chapter 3.1.3

8 SECURE TRANSFER OF HEALTH CARE DATA

SEISMED aims at a secure European medical network (MedNet) that is capable of in-
terconnecting medical health care centers and possibly patient's households in a safe and
secure way. Secure data transmission requires technical measures to obtain confidentiality,
authentication, and non-repudiation which is commonly agreed to be achieved by
cryptographic mechanisms.

Chapter 8.1 outlines the subject under consideration and summarizes the main as-
sumptions about MedNet with respect to utilizing cryptographic mechanisms. Chapter 8.2
presents the asymmetric key management and certification concept of MedNet. Chapter 8.3
gives the details where the MedNet key management differs from the standard [ISO9594-8]
and why. Chapter 8.4 covers non-repudiation. High speed encipherment finally requires
MedNet users to establish symmetric keys which is dealt with in Chapter 8.5.

8 . 1 Scope

The first step towards a European MedNet will be the interconnection of existing health care
information systems (HISs). Future developments in health care may suggest or require to
also connect private households of patients to MedNet in order to provide certain medical
services to patients at their homes. Hence, the network should be designed to be an open
network in the sense that there will be a large varying group of participants using that
network. This recommendation for key management should not restrict the selection of a
network. But as an example one could think of the ISDN to be the physical basis for
MedNet.

This chapter deals with the management (generation, distribution, updating, revocation)
of keys needed for confidentiality, detection of modification, and proofs of origin within
MedNet. For confidentiality this chapter provisionally assumes an encipherment
mechanism, that

• is allowed to be used for encipherment of medical data transmitted over a public
network in every EC-member state and



• is accepted by the patients, medical community, health insurances and the national
health authorities of all EC-member states.

If such an encipherment mechanism turns out not to exist, one has to select one that meets
the above criteria of most the EC-member states. Those who do not accept it, have to
maintain one or more national links that decipher and possibly re-encipher all input from
MedNet by some appropriate system and vice versa for all output to MedNet. Connection to
MedNet and maintenance of such national security domains with a security policy different
from that of MedNet is outside the scope of this chapter.

The group of participants will potentially comprise several thousands (health care
centers) up to several million (households included) of participants. This is called the
requirement R1 of the size of the group of participants. One consequence of R1 is that
exchanging a number of session keys quadratically increasing in the number of participants
were impractical. Hence, it is recommended to utilize public-key encipherment mechanisms.

Sensitivity of personal medical data, European and national legislation demand the
network to provide confidential, authentic, and non-repudable transmission of data. Secret
means that only the parties involved within a certain medical treatment become aware of the
data relevant to this treatment. This requirement R2 of potentially confidential and/or
authentic communication excludes to have non-public keys managed by national,
supranational or European Key Distribution Centers (KDCs). R2 thus also excludes the use
of identity-based cryptographic mechanisms as first proposed by [Sham_85].

The set U of potential participants of MedNet thus comprises: physicians at possibly dif-
ferent departments of health care environments (HCEs), general practitioners, and patients –
all in possibly different districts in possibly different countries. MedNet, thus, has to reflect
the hierarchical interdependencies of these users and their corresponding organizational
entities. From the point of view of the ISO OSI model [ISO7498] protection has to be
provided at least at three layers:

(1) R2 requires to protect the personal communication between a patient and the physician
actually responsible for him. This requires to encipher/decipher some or all data at
the application layer. From the view of patient-physician relations their user
processes are the endpoints of communication. In this sense R2 requires end-to-
end encipherment. This, however, does not keep other participants on the
network (even outside the considered hospital) from learning something about the
digital traffic between the communicating partners.

(2) Hence, protecting the (temporary) network addresses and thereby the identity of the
communicating partners further requires encipherment at the lowest possible layer. If
health care centers utilize public networks the lowest possible layer under their
control will be the transport layer. From the view of patient-physician relations their
health-care information systems are the links of communication. In this sense link-
by-link encipherment has to be provided.

(3) The network itself should also provide an enciphering service on the physical or data-
link layer in order to protect addressing information from wiretappers.

As physicians and patients are mobile users their desired keys have to be provided at the
right terminal at the right time. A user should be encouraged to change his public key
periodically (every 2-5 years) since due to his mobility he has to entrust even his secret keys



to many different machines. Furthermore, a user should be enabled to change a secret key
on demand if he suspects that his actual key is corrupted. Health care information systems
are comparatively static entities within MedNet and, thus, need not change their public keys
frequently. The switching centers of the underlying public network may operate the link-by-
link encipherment with fixed keys for the whole of their lifetime. Hence, end-to-end
encipherment (1) puts the strongest requirements upon MedNet key-management.

The basis for the following recommendation is the Directory – Authentication framework
[CCITT509, ISO9594-8] and a constructive critique [AnMi_90] of this proposed standard.
The following recommendation satisfies the requirements (1) and should, thus, also satisfy
the weaker requirements (2) and (3). In the following, only [ISO9594-8] is cited because it
already avoids some weaknesses of the 1988 CCITT509 recommendation. Nevertheless,
it must be stressed that even [ISO9594-8] has not eliminated all weaknesses. All
modifications and improvements to [CCITT509] and [ISO9594-8] are explicitly given by
chapter 8.3.

8 . 2 Asymmetric key management of MedNet

The main goal of key-management is to provide message confidentiality and authentication
to MedNet users. This is only possible by utilizing public-key encipherment and digital
signature mechanisms. In contrast to the suggestions of [ISO9594-8]) each user must
generate different keys to drive different mechanisms in order to avoid breaches of security.

8 . 2 . 1 Distinguished name service and key distribution

In order to associate a unique user to every name (not necessarily vice versa) a distinguished
name service is provided by Distinguished Name Centers (DNCs) of MedNet. Every
MedNet user can establish at least one pair of keys for encipherment (ek, dk) and for digital
signing (sk, vk), respectively. To support users in publishing their public keys Key
Distribution Centers (KDCs) are provided by MedNet. Their task is to deliver public
keys to anyone who requests them33. If users wish to publish their public keys to several
KDCs they may do so. The resulting redundancy of key storage prevents single KDCs from
getting too powerful.

The canonical way to generate a user's secret and public key(s) were to encourage each
user to generate them on his own. He would then deliver the public key(s) to his KDC(s) to
register them. Depending on the application a user is to more or less identify himself before
being allowed to register a public key.

If the security policy wants health care authorities to monitor communication via
MedNet, these authorities must be provided with the user's secret keys. Hence, they could
generate keys on their own and deliver them to users on demand or users could be enforced
to come up with the corresponding secret key for every public key they want to register at a
KDC.

A compromise between patient's rights on informational self determination and
democratic control over MedNet communication could be established by storing secret keys
by secret sharing mechanisms [Sham_79] at different sites (e.g. KDCs). A minimum
number of such sites were necessary to recover a secret key from the union of their
knowledge. Distributing secret key information over KDCs that are controlled by different

                                                
33 KDCs might also provide the distinguished name service if this turns out to be more efficient.



democratic powers this way could fulfill patient's and health care authorities rights and
needs.

8 . 2 . 2 Certification of public keys

Security of asymmetric cryptography basically rests upon the distribution of authentic keys.
For this purpose MedNet provides a certification service, which is most effectively gained
by a hierarchy of Certification Authorities (CA). Each such CA initially provides a
certificate for the public keys of its immediate predecessor (parent CA) and its immediate
successors (child CAs) or of user's public keys. The certificates mainly consist of a digital
signature for the item to be certified. This standard approach is called strong
authentication according to [ISO9594-8, Section 3]. To initialize the authentication tree
each user u of MedNet is initially acquainted with one such certification authority CAu e.g.
one located near to his home or health care center etc. This acquaintance is established by u
and CAu exchanging their public keys in an authentic way, e.g. by u visiting CAu. By this
initial authentication user u is enabled to recursively verify the certificates of all CA's within
the same hierarchy as CAu. Thus, he can eventually verify all certified public keys of other
users.

Let CA0 denote the root of the CA hierarchy. A default path from user u1 to another user
u2 through the CA hierarchy would pass CAu1

 up to the root CA0 and afterwards from CA0

down to CAu2
. The details and optimizations are given by [ISO9594-8, §7.7, §7.8].

As each public key does not necessarily have to be registered at only one KDC, neither
has each item to be certified by only one CA. Again single CAs are prevented by diverse
certification paths to become too powerful to be trusted by users (patients, physicians, staff
etc.) any more.

8 . 2 . 3 Lifetime of certificates

The lifetime (period of validity) of certificates is subject to the security policy of MedNet.
The longer certificates are valid the easier they are managed, but conversely the more chance
is given to cryptanalysts to break the digital signature mechanism34. Hence, the longer
lifetimes are selected the bigger security parameters are required which in turn leads to less
effective verification (and generation) of certificates. Generation is done once per certificate,
verification is done once (at most few times) per user of the certified item. Thus, a highly
secure signature mechanism should be utilized in favor of long living certificates. For
detailed recommendations refer to chapter 8.4.

It is proposed to update certificates by having a new certificate become valid some time
before the old certificate becomes invalid. This overlapping technique [ISO9594-8,
§10.2.5.1] appears to be more flexible than a strict update of certificates.

8 . 3 Improvements and specifications to the ISO Directory - Authentication
Framework

This chapter summarizes all modifications to [ISO9594-8] recommended for MedNet.
Everything not explicitly specified here is assumed to be handled as given by the ISO-
standard.

                                                
34 In general, a longer period of secret key usage implies more instances (representatives, couriers,

machines, chip cards etc.) to be entrusted with that secret key.



1) The 1990 ISO standard uses an public-key encipherment mechanism to produce digital
signatures. [ISO9594-8, §4, §8.1]. Instead, a strict distinction between confidentiality
and authentication services is proposed35. Additionally, parametrizing both kinds of
mechanisms by the same pair of secret and public key leads to dangerous interferences.
One is weakening the other and vice versa.

It is assumed that MedNet employs a public-key encipherment E and a digital
signature mechanism G and that each user u holds at least one pair of keys for each of
them.

Let κEu be the security parameter of user u for E. Let PE, CE be the respective sets of
plaintexts and ciphertexts, and EKeyE, DKeyE the respective sets of public encipherment
and private decipherment keys of E. Finally, let

(eku, dku) ← keygenerate(κEu)

c := encrypt(eku, p)

p := decrypt(dku, c)

denote key generation, encipherment, and decipherment for E.
Analogously, let κG be the security parameter of user u for G. Let MG, SG be the

respective sets of messages and signatures, and SKeyG, VKeyG the respective sets of
private signature and public verification keys of G. Finally, let

(sku, vku) ← keygenerate(κGu)

s := sign(sku, m)

ok := verify(vku, m, s)

denote key generation, signing, and verifying for G.

2) The notation in [ISO9594-8, §4] has to be thoroughly modularized:
A{K} ::= K| |sign(skA, K) is defined by means of a digital signature mechanism. All

definitions referring to digital signatures (i.e. that of a certificate [ISO9594-8, §7.2])
should explicitly keep to the above definition instead of “simulating” a signature by
means of a very specific encipherment mechanism for which hardly any other than the
RSA block encipherment mechanism can be applied.

3) After a potential sender has received a public key of the intended receiver and has
checked its certificate successfully, both partners should authenticate each other because
two main attributes of MedNet communication are secrecy and authentication. The
former requires the receiver to authenticate himself against the sender, the latter requires
the sender to authenticate himself against the receiver. Thus, mutual authentication
appears to be the default requirement.

It is recommended to utilize the 2-way authentication improved according to
[AnMi_90]. This protocol is recommended because three-way authentication [ISO9594-
8, §9.4] has no advantage over the improved 2-way authentication.

                                                
35 E.g., a formal definition for digital signature systems is given by [GoMR_88]. It defines the security of

a digital signature system independently from the property if a signed message is recoverable from its
signature or not. To the contrary, any definition of an encipherment mechanism and thus of a public-key
encipherment mechanism must define the information theoretic property that the plaintext of a
corresponding ciphertext must be recoverable from that ciphertext. This settles the fundamental difference
between digital signature systems and public-key encipherment mechanisms.



8 . 4 Recommendations

According to chapter 8.2 the digital signature mechanism utilized for producing certificates
has

• to be an digital signature mechanism
• to resist attacks for the whole lifetime of a certificate and
• not necessarily to provide a very high verification speed.

According to the current cryptologic research the best choice is to utilize GMR (chapter
5.1.2). Alternatively, the RSA digital signature mechanism (chapter 5.1.3) extended by the
Damgård hash mechanism can be employed.

The hash mechanism “sqr mod n” proposed by [ISO9594-8, Annex D] is not to be used
because of attacks mentioned by [AnMi_90].

8 . 5 Establishment of symmetric keys

After u2 has received an authentic public key of u1 for an encipherment mechanism he could
use this key to encipher messages by means of this encipherment mechanism, e.g. RSA
(chapter 3.1.5). If security requirements should not demand to use RSA or performance
requirements prohibited it the users u1 and u2 are recommended to exchange a symmetric
key. This can be done in advance for a series of consecutive messages or once for each
message. The decision depends upon the security policy and the categorization of the data to
be transmitted.

Exchanging a symmetric key in advance should be done according to ISO9798-3 and
[Fumy_90]. Otherwise, hybrid encipherment (3.1.1) enhanced by detection of modification
(chapter 7) can be used.

9 SECURE HEALTH CARE DATABASES

Let a database consist of an Operating S    ystem (OS), a D   ataB   ase M    anagement S     ystem   
(DBMS), and an Access C    ontrol M    anagement S     ystem (ACMS). Roughly speaking, the tasks   
of these components are persistent storage, query evaluation and data retrieval, and
enforcing some global access control strategy, respectively. Several access control strategies
have been considered: discretionary, multi level security, chinese wall, personal model of
data, etc. There are two stages when the ACMS plays an essential role: Whenever a user
passes a query to the DBMS, the ACMS is consulted how much of the resulting answer the
user is permitted to receive. Complementary, whenever a user inputs some data into the
DBMS, the ACMS is responsible to prepare the input data in a way that enforces the access
control strategy. The preparation might be some kind of labelling or preprocessing.
Analogously, the consultation at the time of retrieval might be some kind of checking the
user authorization against the data labels or it might be the inversion of the preprocessing in
order to revert the data to its original form. It has long been investigated how to design and
implement secure databases. Due to governmental initiatives [DoDS_83, DoDS_85] these
investigations have focused upon the confidentiality of data rather than on detectability of
modification or on authentication. A recent overview of database security is presented by
[CFMS_95]. The following outlines a systematic approach to database security.



9 . 1 Proposed mechanisms

Specific proposals are still under consideration.

9 . 2 Choice of security parameters

This chapter completely depends upon the proposals of chapter 9.1.

9 . 3 Models of adversary control

Several possibilities of adversary control over a database have been considered in the
literature. By order of increasing severity, adversaries could:
c1 use their privileges if they are authorized users of the OS and the DBMS,
c2 inspect the raw data which is processed or stored by the OS,36

c3 inspect the raw data while it is processed by the DBMS, e.g., during evaluations of
queries, by means of Trojan horses or covert channels, or

c4 subverting the access control management system.

In the following, it is assumed that an adversary who controls a database by means of ci also
controls it by any weaker means cj (j < i). Hence, only four combinations of these means are
considered as interaction models. It is further assumed that there are n database available
which are separately managed. Orthogonally it is distinguished if an adversary has full
control, i.e., if he controls all instances or if he has partial control, i.e., if he controls at
most t–1 (t ≤ n) of the instances. In the sequel, Fi and Li denote full and partial control at
levels c1 to ci, respectively. For each interaction model, some counter measures are
discussed. The counter measures in their turn might impose certain restrictions upon the
expressive power of the query language that the DBMS can provide.

Interaction model F1
Adversaries are regarded to be authorized users of the OSs and DBMSs. I.e., users do

not trust each other, but trust the databases. Active attacks are admitted since the databases
are practically, and often even theoretically, unable to distinguish attacks from harmless
queries.

Counter measures: Access control management and security audit at user interface
level, e.g., based on user identification.

Expressive power of queries: Relational algebra.

Interaction model L2
Adversaries are regarded to be authorized users of the OSs and the DBMSs and they can

inspect data stored by at most t–1 OSs.
Counter measures: DBMSs evaluate queries on plain data. ACMSs control access to

plain data by enciphering it according to the access control strategy. OSs only store
enciphered data.

Expressive power of queries: Relational algebra.

Interaction model F2
Adversaries are regarded to be authorized users of the OSs and the DBMSs and they can

inspect data stored by all OSs.

                                                
36 The inspection of data is judged to be the more severe, first, the more data an adversary can get, second,

the more context information he can get for the inspected data or parts thereof.



Counter measures: DBMSs evaluate queries on plain data. ACMSs control access to
plain data by enciphering it according to the access control strategy. OSs only store
enciphered data [CaJü_85].

Expressive power of queries: Relational algebra without total or partial order
predicates [Denn_82, ch. 3.5.2].

Interaction model L3
Adversaries are regarded to be authorized users of the OSs and the DBMSs and they can

inspect data stored by at most t–1 OSs or processed by the corresponding DBMSs. For
simplicity, let f(•, •) be a function which is going to be evaluated by some DBMS d. A
function g(•, •) can be evaluated by any of the n DBMSs. How can d compute f by the help
of the other DBMSs without at most any t–1 of them learning anything about the inputs nor
the output of f? In general, the function f may take an arbitrary number of inputs.

Counter measures: During data input, each ACMS splits up its input data into n
shares and passes each share to one of the n OSs. When d wants to evaluate the query f, its
ACMS chooses some set of k out of the n OSs and asks them to return the result of g
applied to their respective shares. The ACMS of d finally collects the shares of the result and
computes the result.

In order to generate the shares of input data some secret sharing homomorphism ϕ
is applied such that for each required function (operator) f of the query language with inputs
a, b there is some function g such that

      

f a,b( ) = ϕ −1

g ϕi1
a( ),ϕi1

b( )( )
g ϕi2

a( ),ϕi2
b( )( )

M

g ϕik
a( ),ϕik

b( )( )























Each OS stores the shares of its respective DBMS. [Bena_87].
Expressive power of queries: Relational algebra.

Interaction model F3
Adversaries are regarded to be authorized users of the OSs and the DBMSs and they can

inspect data stored by the OS or processed by the DBMS. For simplicity, let f(•, •) be a
function which is going to be evaluated by some DBMS d. A function g(•, •) can be
evaluated by any of the n DBMSs. How can d compute f by the help of the other DBMSs
without them, even if they collude, learning anything about the inputs nor the output of f? In
general, the function f may take an arbitrary number of inputs.

Counter measures: If a local DBMS wants to update a data item, its ACMS enciphers
the data item and passes the result to some DBMS (e.g., some central site). Whenever some
local DBMS d wants to evaluate a query f, its ACMS asks the central DBMS to return the
result of g applied to the respective enciphered items. Finally, d receives the enciphered
result and its ACMS can decipher it.

In order to encipher data items some uniform privacy homomorphism ϕ is applied
such that for each required function (operator) f of the query language with inputs a, b there
is some function g such that



      
f a,b( ) = ϕ −1 o g ϕ a( ),ϕ b( )( )

The OS only stores data enciphered by ϕ. [RiAD_78] proposes four privacy homo-
morphisms for general algebras, [DaYe_82] for algebras including the operators join and
projection, [BlM1_85] for algebras including statistical operators like average, standard
deviation, etc., [WaP1_86] presents a general approach. A principle problem of any
universal privacy homomorphism ϕ is that all users need to share some common key(s)
which enable(s) them to compute ϕ-1, but which must be kept secret from the DBMS and the
OS.

Expressive power of queries: Relational algebra without total or partial order
predicates. [Denn_82, ch. 3.5.2]. According to [AhL1_87] a privacy homomorphism can
easily be inverted if the operation g is chosen to be addition in Z Z, Z Zm (for some m) , or Z
Z2 

µ (for some µ).

Interaction model F4
Adversaries are regarded to be authorized users of the OSs and the DBMSs, they can

inspect data stored by the OS or processed by the DBMS, and they can subvert any central
ACMS.

Counter measures: Each user employs his individual ACMS and does not rely upon
the ACMSs of the untrusted databases. Only the individual user knows from where to
retrieve data that he input himself. Hence, for each individual user there is a virtual hierarchy
of DBMSs. At the root his own DBMS is located whereas the nodes at lower levels are
formed by the DBMSs of other users and by the shared databases. The individual ACMSs
utilize the counter measures above according to the adversary model F1, F2, L3, F3 they
assume for the other databases, with one essential difference. An individual ACMS no
longer needs to respect the functions (or operators) provided by the individual DBMS. For
example, a homomorphism property with respect to these functions is no longer necessary.

Besides the counter measures mentioned above, there are specific solutions to F4.
For multi-level security strategies, it has been proposed to encipher the data by keys

from some inclusion hierarchy. I.e., the key hierarchy reflects the clearance hierarchy of the
users. [DaWK_81, AkTa_83, MaAk_83, MTMA_85, Sand_88, ChTa_90].

In case of more general strategies of access control (discretionary) there are the fol-
lowing options: An ACMS may store the data at some trusted site (e.g., a personal device
like a Smart Card). Alternatively, it may separate the input data into meaningless “atoms”
and distribute them over untrusted sites [FaRa_92].

Expressive power of queries: Not quite clear. Some hints suggest that this
interaction model only allows for a significantly reduced expressive power of the query lan-
guage, i.e., a comfortable file system, where each user manages his own data enciphered by
individual cryptographic keys.

9 . 4 Valuation of the results

The adversary interaction models F1, F2, L3, F3 appear to be suitable for user groups who
put some minimum trust into each other and into the database. For interaction model F2 no
better proposal than for F3 is known. The proposal of [CaJü_85] suffers from a significant
overhead of decipherment and encipherment for every query. For interaction model L3, the
secret sharing homomorphisms of [Bena_87] are promising. They allow for arbitrary



operations on data fractions and provide security against unconditionally powerful
adversaries. For interaction model F3, no suitable recommendations can be made. The use
of privacy homomorphisms is limited since they neither allow order predicates nor addition
as operations on enciphered data. Besides, many proposed privacy homomorphisms have
turned out to be insecure. E.g., [BrYa_88] and [AhL1_87] broke the proposals of
[RiAD_78] and [WaP1_86], respectively.

Users who are personally liable for their actions (i.e., who cannot make some database
legally liable for breaches of confidentiality) will only accept interaction model F4 (and
possibly L4) as suitable.

Intuitive conclusion: “Given a security strategy, the more control adversaries have over a
database, the less expressive the query language of that database can be.”

9 . 5 Detectability of modification and non-repudiation

Naturally, the same interaction models should also be studied with respect to the other
important services of confinement: detectability of modification and non-repudiation. Early
papers regarded detectability as if it would simply be achieved by encipherment. They
argued it would be highly unlikely that an adversary succeeded in modifying enciphered data
in such a way that the modification would remain undetected after deciphering. Reliable
detection, however, implies that some redundancy is inserted into the data before
enciphering it. It is recommended to achieve this by operating the employed encipherment
mechanism in PCBC mode (chapter 7.1). The service of non-repudiation can only be
achieved by digital signatures (chapter 5). If signed results of queries are required, it
follows that any input into the database must have been signed by its originator. However, it
is an open research problem if and how general query evaluations can yield signed results
under adversary interaction models F1, .., F3. Under interaction model F4 there are
solutions, since data is only read and written, but is not subject to algebraic operations.

A DEMONSTRATION OF A SOFTWARE IMPLEMEN-
TATION

The “prototype for encryption” subsequently referred to as SECURE Talk was demon-
strated to the SEISMED consortium during the meeting at the University of Hildesheim on
September 9, 1993. The main goal of the demonstration was to present ease of use and
performance of many of the proposed cryptographic mechanisms.

The hardware configuration was formed by 4 Apple Macintoshes equipped with high
resolution graphics and connected by Ethertalk. They simulated 4 medical departments: a
Radiology, a Surgery, a Laboratory, and an Authentication Center. As an example i) the
radiology generated an X-ray picture of 1.1 Mbyte using the graphic processor OSIRIS, ii)
the radiology transmitted this picture to the surgery, iii) the surgery edited it and added some
annotations and iv) finally forwarded the file to the laboratory. The transmission ii) was
protected by attaching a proof of origin and enciphering the whole picture and transmission
iv) was protected by only enciphering the picture. The last stage of the demonstration
presented how the cryptographic keys are automatically established for such a set of
workstations.



SECURE Talk provides the functionality of PGP 2.6 [Garf_95] plus automatic key
management in (linked) Apple Talk™ networks. In addition, SECURE Talk provides many
more cryptographic mechanisms and performs approximately twice as fast on the same
Apple Macintosh platform.

It was found that the prototype is easy to use and performs sufficiently fast for many
medical applications. An increase of cryptographic speed by a of factor of 3 to 4 appears to
be achievable with the same cryptographic kernel.

A . 1 Goal of the demonstration

SEISMED develops and implements a prototype [Bleu_94] that demonstrates secure
communication utilizing only standard hardware. It shows, in particular, which mechanisms
yield what performance. The most complex mechanisms are symmetric and asymmetric
encipherment, message authentication codes and digital signatures.

The message of this prototype is that cryptography (and in particular asymmetric
cryptography) is practical for many medical applications even if implemented in

software.

The recent years showed that the computational power of hardware one can buy for one
ECU increases by about 40% each year. This means that software cryptography will fulfill
the requirements of more and more ambitious applications at constant cost even if algorithms
are not improved. The prototype presents the operability of software implemented
cryptographic mechanisms which are integrated into a simplified scenario.

This scenario is interactive, (transparent,) sequential multi-user, secure end-to-end
file handling between the workstations37 of a LAN.

It might, e.g., represent data transfer between the physicians (and/or patients) of different
hospitals in possibly different regions or countries. It might, as well, represent the
communication within one department of a hospital.

Interactive means that a command interpreter constantly offers a menu of com-
munication services to the user, waits for a command, executes it and waits for the next one.

Transparent means that the security management is done nearly automatically.
This optional feature releases the user from managing parameters and keys as much as
possible. In an optimal case, one does not even notice that security services protect the
communication.

Sequential multi-user means that multiple users are supported at the same
workstation one after another38. The underlying operating system is not assumed to
support a multi-user mode although this would be helpful. Users are requested to identify
themselves before they gain access to the prototype. The basic version of the prototype will
support user identification by passwords, future versions might replace this method by more
sophisticated techniques like smart cards, biometrics etc. A dependable identification mecha-
nism will be the key to accountability, a necessary property of a system dealing with
sensitive data.

                                                
37 It is explicitly assumed that autonomous workstations are running in the network, not only terminals.

These workstations may, but need not be equipped with hard disks, CD-drives, smart card readers, etc.
38 This is a common requirement for many workstations of a hospital information system (e.g., ward

PCs).



Secure end-to-end means that the content of the communication is protected at the
application layer [ISO7498-2] against unauthorized disclosure (confidentiality) and
undetected, unauthorized modification (integrity). No other network layer is protected by the
SEISMED prototype. This remains the task of operating system and network manager.

File handling means that SECURE Talk supports the participants of the underlying
LAN in loading, storing, and securely exchanging files created by arbitrary applications.
(This includes text–, code–, picture–, video–, biosignal–, soundfiles, etc.) A generic way to
exchange data between applications is by file. Hence, the smallest data unit protectable by
SECURE Talk is a file. Many medical applications are supposed to be supportable by this
interface, i.e., their communication can be directed into files, which can be transferred by
the prototype. Of course, it is not claimed that secure file handling in such a generic way
covers the communication needs of every medical application. However, it appears
unreasonable to restrict SECURE Talk to more specific data structures. For example,
although SEISMED exclusively deals with data security in the health care environment, it
has not identified and agreed upon specific medical data structures so far.

Beside exchanging other applications' data, SECURE Talk integrates editing and
exchanging short text memos. This might be found comfortable not only by users who are
already used to e-mail.

The hardware assumptions of the prototype reflect the decentralized character of a typical
health care environment. It is only assumed that there is some digital, bit transparent
network (e.g., Ethertalk, ISDN, etc.) connecting the workstations.

The SEISMED prototype SECURE Talk 1.0 is implemented for workstations that
run Apple operating system 7.0 or higher and are connected by Apple Talk (Ethertalk
or Locatalk). The off-line features can be demonstrated on one workstation. On-line
features require a set of at least 3 workstations. Only Apple operating system 7.0 and
the SECURE Talk software have to be installed on each machine. No extra
hardware, especially no crypto hardware is needed.

Chapter 2 describes the demonstration of SECURE Talk on 9. September 1993. Chapter 3
summarizes the implementation and presents the results of the demonstration. Chapter 4
summarizes the main findings. A bibliography is appended.

A . 2 Demonstration of SECURE Talk

Four Apple Macintosh workstations equipped with high resolution graphics (1024 × 768 ×
256 grey scales) were connected via Ethernet (Transmission rate = 10 Mbit/s). Three of
them represented a physicians workstation at some clinical departments, namely, a
radiology, a surgery, and a laboratory. The fourth workstation served as an authentication
center.

The demonstration proceeded in two stages, the operational stage and the initialization
stage. To put emphasis on presenting usability and performance of the cryptographic
mechanisms, the demonstration started with the operational stage. Finally, it was shown,
how a network of Macintosh workstations had to be initialized to run SECURE Talk.



A . 2 . 1 Operational stage

The operational stage consisted of 4 phases: At first, the radiology took an X-ray picture
(Fig. A-1). This was presented by the medical image processor OSIRIS [LRGR_93].
Second, the radiologist switched to SECURE Talk, addressed the surgeon and decided to
add a proof of origin to the picture as well as to encipher it. Automatically, the necessary
key retrieval and cryptographic action took place and the picture file was transmitted to the
surgeon. Third the surgeon got notice of an incoming file, chose to decipher it and to verify
its attached proof of origin. Again, all cryptographic action was performed instantaneously
and after switching to OSIRIS the surgeon had the transmitted picture in front of her.
Fourth, the surgeon annotated some comments to the picture and decided to forward it to the
laboratory. This time she chose to purely encipher it. Finally, the laboratory received and
decipher ed the annotated picture.

Up to this point of the demonstration, all communication included reading data from the
sender's fixed disk and storing it to the receiver's fixed disk. Hence, the sending time
comprised read access, cryptographic operation, Ethernet transmission, and write access.
The dominating link of this chain was the write access. To further investigate the
performance of the cryptographic operations a RAM disk was installed and the same picture
as above was enciphered and decipher ed from that RAM disk onto itself. For benchmarks
see chapter 3.

Fig. A-1 OSIRIS view of an X-ray picture



A . 2 . 2 Initialization stage

Obviously, the operational stage relies on well generated and distributed public keys for
each user participating in a SECURE Talk session. This is done right at the beginning when
each user launches SECURE Talk. SECURE Talk allows every participant to generate his
own secret keys39. Afterwards, some key distribution with simplified40 X.509
certification is performed. The SECURE Talk Server serves as a distinguished name server,
as the public key directory, and as the certification authority at the same time.

During the initialization phase each user and the SECURE Talk Server authenticate each
other physically. In practice this is done by each user approaching physically the SECURE
Talk Server in its role as a distinguished name server. The user is given a unique name
relative to all other users registered so far. Afterwards, user and server exchange their
individual verification keys by which the other party may later verify their digital signatures.
This way, all subsequent communication, and in particular the key distribution, can be
authenticated based on this initial (physical) authentication.

Naturally, the communication during the initial authentication has to be authenticated
itself. SECURE Talk achieves this by data transfer via diskettes where the diskettes are
taken physically to and from the server by the users themselves. Of course, the diskettes
may be replaced by smart cards, advanced cards, etc. in a later version.

After initial authentication with each user, the operational stage begins and the SECURE
Talk Server is only needed in its role as a public key directory and as a certification
authority. In both roles the server runs automatically on the network. At this stage, all key
management is done nearly41 transparent to the users.

A . 3 Implementation and Results

SECURE Talk 1.0 is developed under Apple System 7.0  using an Object oriented
THINK Pascal compiler and MPW assembler. The application is completely designed
in a modular way. Where performance allowed it, i.e., for the graphical user interface, the
advantages of objects, class hierarchies and inheritance are utilized. The cryptographic
kernel of SECURE Talk is a high-speed cryptographic library CPDB (Crypto Protocol
Development Base). CPDB provides DES [DES_77], G-DES [PfAß_90] and RSA
[RSA_78] encipherment with several modes of operation. Combining any symmetric with
any asymmetric encipherment system is supported to achieve hybrid encipherment. Several
electronic signature systems like RSA and GMR [GoMR_88] are provided. The key sizes of
all asymmetric systems may be defined by the user himself. The modular design of CPDB
allows easy insertion of new cryptographic systems as well as improvement of existing
ones. CPDB provides an operational speed of hybrid encipherment as well as of digital
signatures of roughly 1,100 Kbit/s (chapter 3.5).

SECURE Talk is a standard Apple Macintosh application supporting mouse, pull down
menus, dialog boxes, hot keys, etc. and thus conforms to Apple's graphical user interface
conventions. The sole hardware requirement to launch SECURE Talk is a workstation

                                                
39 however, version 1.0 does not support to type in 512 bit integers manually. Rather it provides a pseudo

random number generator for each user to do the job.
40 certification tree of fixed depth = 2
41 “Nearly” means that only some minor alerts inform the users about what is going on with the key

management. But the users do not have to take explicit actions concerning key management.



running Apple OS 7.0 or higher (Performa, Macintosh, Powerbook, Centris, Quadra, etc.).
The demonstration of network services, however, requires a network — at least three of the
above workstations connected via Apple Talk.

A . 3 . 1 Result of the demonstration

Of course, a demonstration presenting some transparent service aims at conflicting goals.
On the one hand, it should show the whole service achieved and on the other hand it should
show nothing because the service is intended to be transparent. Two aspects may show how
the demonstration of SECURE Talk solved this paradox:
a) Almost every detail of using cryptographic mechanisms can be hidden from the user

except the generation, storage, usage, and deletion of his secret key(s). If the user is
forced to trust some special authority, subsystem, hardware, software or whatever to
maintain these tasks for him he will (reasonably) not trust the whole of the integrated
system.

Hence, the golden rule: Do not try to prevent users from managing their secret keys!
However, proper secret key management requires training.

In contrast to this rule and completely for convenience of demonstration SECURE Talk
assumes that users trust their own workstations and their application software to
generate safe secret keys for them. It is, e.g. impossible for a user to type in a secret
RSA key manually.42

b) The essential steps of the key management and progress of cryptographic mechanisms
were indicated to the user by some graphical alert boxes. Of course, these visual
indicators need not be integrated into applications which require complete transparency
of the underlying mechanisms.

By the above means it was possible to convince the audience that cryptographic mechanisms
can be sufficiently easy to use. Furthermore, the benchmarks of SECURE Talk software
achieved a transmission rate with hybrid encipherment using RSA (512 bit ) and DES as
well as with digital signatures using RSA (512 bit) and a DES hash mechanism of 240
Kbit/s. Roughly twice the speed (447 Kbit/s) was achieved if the source and destination data
were located on RAM disks which saved accessing time to fixed disks. All benchmarks
were taken between an Apple Quadra 950 (MC 68040, 33 MHz) and an Apple Centris 650
(MC 68030, 33 MHz) connected via Ethertalk phase 1.

Kbit/s
Apple OS
(copying)

SECURE Talk
(enciphering)

disk → disk 1,921 179

Local RAM → disk 2,471 215

disk → RAM 3,052 266

RAM → RAM 3,706 323

                                                
42 Naturally, this might leave an audience suspecting that effectively SECURE Talk does not encipher in

the strong way it is promised. However, this suspicion were not ruled out by users being able to type in
their secret keys, it can only be ruled out by an evaluation of its design process, source code, compilers
used, etc.



disk → disk 774 240

Ethertalk RAM → disk 851 263

disk → RAM 1,266 392

RAM → RAM 1,441 447

Fig. A-2 Performance of SECURE Talk compared to plain data transfer rates

Some closer benchmarks (Fig. A-2) were taken to investigate why SECURE Talk 1.0
proves unable to get the best out of the high cryptographic speed of the underlying
cryptographic library CPDB. Up to a transmission rate of 1,100 Kbit/s the cryptographic
mechanisms are not expected to be the limiting factor. But according to Fig. A-2 they are.

The following parameters were measured: Source and destination data may reside in
RAM or on a fixed disk, the destination medium may be located on the same machine as the
source medium or on a remote machine connected by Ethertalk. Obviously, Ethertalk slows
down the data transfer rate by a factor of roughly 2.5 compared to local copying.

Column 4 presents some unexpected findings:

• Encipherment from one disk to the same disk performs some 25% slower! than en-
cipherment over the network. Probably, this is due to some kind of mutual prevention of
reading from and writing to the same fixed disk alternatingly. Hence, the benchmarks
for encipherment on the local machine appear to be influenced by undetected causes.

• Encipherment over the network achieves no better transmission rate than 447 Kbit/s
which is only 40% of the possible speed of 1,100 Kbit/s. Supposingly, the reason is
that the actual implementation of SECURE Talk makes no use of concurrent reading and
writing. Rather it performs reading, enciphering, and writing sequentially one after the
other. Ideally, it were possible to put reading, encipherment, and writing into three
consecutive steps of a pipeline. Let sr, se, sw denote the operational speed of the
respective steps, sserial be the throughput of the serial execution and spipeline be the
throughput of the corresponding pipeline. Then one has

    
spipeline = min sr ,se ,sw{ }

    

sserial = 1
1
sr

+ 1
se

+ 1
sw

,

Consider, for example, transmission from disk to disk via Ethertalk (Fig. A-2, line 5).
The Apple operating system performs reading and writing almost concurrently, hence
one can assume that sr ≈ sw ≈ 774 Kbit/s (Fig. A-2, col. 3). With se = 1,100 Kbit/s one
achieves sserial = 286 Kbit/s. This calculation still ignores some processes that control the
graphical user interface. Hence, the benchmark of 240 Kbit/s is pretty well explained.

From the above analysis one would expect an operational speed of approximately 744 Kbit/s
up to 1 Mbit/s if SECURE Talk would utilized concurrent disk access optimally. It is
considered that this were sufficient for many medical applications.



A . 4 Summary and items of future interest

The prototype SECURE Talk basically provides the cryptographic security services of the
OSI application layer at a friendly GUI. Although it were a reasonable next step, it does not
attempt to integrate these services into some existing application [ECMA138].

Users of SECURE Talk can communicate confidentially and/or authentically via a local
area network. They can experience more or less centralized forms of public key management
and the performances of software encipherment and authentication under varying
cryptographic parameters. The operational speed achieved by the current implementation is
about 250..450 Kbit/s depending upon the media data is read from and written to. With
some effort the current implementation could be enhanced to utilize concurrent reading from
and writing to disk which would yield an operational speed of about 750..1,100 Kbit/s
again depending upon the media.

Real health care information systems, of course, have to conform to a specific security
policy. Thus they require additional organizational and security properties that could not be
included within SECURE Talk 1.0. It remains a future task to design and elaborate them.

REFERENCES

ACGS 88 Alexi W, Chor B, Goldreich O, Schnorr C P: RSA and Rabin functions: Certain parts are as
hard as the whole; SIAM J. Comput. 17/2 (1988) 194-209.

AdTa1 90 Adams C, Tavares S: The Structured Design of Cryptographically Good S-Boxes; Journal of
Cryptology 3/1 (1990) 27-41.

AhL1 87 Ahituv N, Lapid Y, Neumann S: Processing Encrypted Data; Communications of the ACM
30/9 (1987) 777-780.

AkTa 83 Akl S G, Taylor P D: Cryptographic solution to a multilevel security problem; Crypto '82,
Plenum Press, New York 1983, 237-249.

AMD 85 Advanced Micro Devices: Am9518/Am9568/Am28068 System Timing Controller Technical
Manual; Advanced Micro Devices, Inc., 1985.

AnMi 90 I´Anson C, Mitchell C: Security Defects in CCITT Recommendation X.509 – The Directory
Authentication Framework; Computer Communication Review 20/2 (1990) 30-34.

Aßma 88 Aßmann R: Effiziente Software-Implementierung von verallgemeinertem DES; Diplomarbeit
am Institut für Rechnerentwurf und Fehlertoleranz der Universität Karlsruhe, Abgabe Februar
1989; ursprünglich als Studienarbeit "Effiziente MC 68000 Assembler-Implementierung von
verallgemeinertem DES" in 1988 begonnen.

Aßma 89 Aßmann R: Assembler-Implementierung von modularer Langzahlarithmetik; Studienarbeit am
Institut für Rechnerentwurf und Fehlertoleranz der Universität Karlsruhe 1989.

BaBK_94 Baldin T, Bleumer G, Kanne R: CryptoManager - Eine intuitive Programmierschnittstelle für
kryptographische Systeme; Walter Fumy, Gisela Meister, Manfred Reitenspieß, Wolfgang
Schäfer (Hrsg.) Sicherheitsschnittstellen - Konzepte, Anwendungen und Einsatzbeispiele,
Proceedings des Workshops Security Application Programming Interfaces 94, Deutscher
Universitäts Verlag, 17.-18. November 1994 München, 79-94.

Barr 87 Barrett P: Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm
on a standard digital signal processor; Crypto '86, LNCS 263, Springer-Verlag, Berlin 1987,
311-323.

BeFG 89 Beller W, Frößl J, Giesler T: Spezifikation und Implementierung eines erweiterten DES-
Algorithmus als VENUS-Standardzellenchip; Studienarbeit am Institut für Rechnerentwurf und
Fehlertoleranz, Universität Karlsruhe (Betreuer: Oliver Haberl, Thomas Kropf), 1989.

Bena 87 Cohen Benaloh J: Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret
(Extended Abstract); Crypto '86, LNCS 263, Springer-Verlag, Berlin 1987, 251-260.

Berk 82 Berkovits S: Factoring via Superencryption; Cryptologia 6/3 (1982) 229-237.
Bers 93 Berson T A: Differential cryptanalysis mod 2^32 with applications to MD5; Eurocrypt '92,

LNCS 658, Springer-Verlag, Berlin 1993, 71-80.



BiSh 90 Biham E, Shamir A: Differential Cryptanalysis of DES-like Cryptosystems; Department of
Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot,
Israel, Technical Report CS 90-16, July 19 1990.

BiSh 91 Biham E, Shamir A: Differential Cryptanalysis of Feal and N-Hash (Extended Abstract);
Eurocrypt '91, Brighton, 8-11 April 1991, Abstracts, 1-8.

BiSh3 91 Biham E, Shamir A: Differential Cryptanalysis of DES-like Cryptosystems; Journal of
Cryptology 4/1 (1991) 3-72.

BiSh4 91 Biham E, Shamir A: Differential Cryptanalysis of the Full 16-round DES; Technical Report
no. 708, December 1991, Computer Science Department, Technion, Haifa, Israel.

BiSh 92 Biham E, Shamir A: Differential Cryptanalysis of Snefru, Khafre, REDOC-II, LOKI and
Lucifer; Crypto '91, LNCS 576, Springer Verlag, Berlin 1992, 156-171.

BKPS 93 Brown L, Kwan M, Pieprzyk J, Seberry J: Improving Resistance to Differential Cryptanalysis
and the Redesign of LOKI; Asiacrypt '91, Proceedings, Fujiyoshida, November 11-14,
Springer-Verlag, Berlin 1993, 36-50.

Bleu 94 Bleumer G: Security for decentralised health information systems; in B. Barber, A.R. Bakker,
S. Bengtsson (ed.): Caring for Health Information: Safety, Security and Secrecy, Elsevier
Science, Amsterdam 1994, 139-146.

BlGo 85 Blum ;, Goldwasser S: An Efficient Probabilistic Public-Key Encryption Scheme Which
Hides All Partial Information; Crypto '84, LNCS 196, Springer-Verlag, Berlin 1985, 289-
299.

BlM1 85 Blakley G R, Meadows C: A Database Encryption Scheme which Allows the Computation of
Statistics Using Encrypted Data; Proceedings of the 1985 Symposium on Security and
Privacy, April 22-24, 1985, Oakland, California, IEEE Computer Society, 116-122.

BoBo 92 den Boer B, Bosselaers A: An Attack on the Last Two Rounds of MD4; Crypto '91, LNCS
576, Springer Verlag, Berlin 1992, 194-203.

BoBo 94 den Boer B, Bosselaers A: Collisions for the Compression Function of MD5; Eurocrypt '93,
Lofthus, Norwegen, Mai 1993, Proceedings, LNCS 765, Springer-Verlag, Berlin 1994, 293-
304.

BoRu 89 Bong D, Ruland C: Optimized Software Implementations of the Modular Exponentiation on
General Purpose Microprocessors; Computers & Security 8 (1989) 621-630.

BrDL 93 Brandt J, Damgård I, Landrock P: Speeding up Prime Number Generation; Asiacrypt '91,
Proceedings, Fujiyoshida, November 11-14, Springer-Verlag, Berlin 1993, 440-449.

Bric 90 Brickell E F: A survey of hardware implementations of RSA; Crypto '89, LNCS 435,
Springer-Verlag, Heidelberg 1990, 368-370.

BrOd 92 Brickell E F, Odlyzko A M: Cryptanalysis: A Survey of Recent Results; Gustavus J.
Simmons: Contemporary Cryptology – The Science of Information Integrity; IEEE Press,
Hoes Lane 1992, 501-540.

BrYa 88 Brickell E F, Yacobi Y: On Privacy Homomorphisms (extended abstract); Eurocrypt '87,
LNCS 304, Springer-Verlag, Berlin 1988, 117-125.

CaJü 85 Caroll J M, Jürgensen H: Design of a Secure Relational Data Base; Computer Security: the
practical issues in a troubled world, Proceedings of the Third IFIP International Conference on
Computer Security, IFIP/Sec'85, Dublin, Ireland, 12-15 August, 1985, Jane B. Grimson,
Hans-Jürgen Kugler (eds.), North-Holland, 1-16.

CaWe 79 Carter J L, Wegman M N: Universal Classes of Hash Functions; Journal of Computer and
System Sciences 18 (1979) 143-154.

CCITT509 ISO/CCITT Directory Convergence Document: The Directory - Authentication Framework;
CCITT Recommendation X.509 and ISO 9594-8, "Information Processing Systems – Open
Systems Interconnection – the Directory-Authentication Framework".

ChEv 86 Chaum D, Evertse J H: Cryptanalysis of DES with a Reduced Number of Rounds; Sequences
of Linear Factors in Block Ciphers; Crypto '85, LNCS 218, Springer-Verlag, Berlin 1986,
192-211.

ChRo 91 Chaum D, Roijakkers S: Unconditionally Secure Digital Signatures; Crypto '90, LNCS 537,
Springer-Verlag, Berlin 1991, 206-214.

ChTa 90 Chick G C, Tavares S E: Flexible access control with master keys; Crypto '89, LNCS 435,
Springer-Verlag, Heidelberg 1990, 316-322.

CFMS 95 Castano S, Fugini F G, Martella G, Samarati P: Database Security; Addison Wesley - ACM
Press, 1995.



Comb 90 Comba P G: Exponentiation cryptosystems on the IBM PC; IBM Systems Journal 29/4
(1990) 526-539.

Copp_89 Coppersmith D: Analysis of ISO/CCITT Document X.509 Annex D, IBM Research Division,
Yorktown Heights, June 1989

Copp 92 Coppersmith D: DES and differential cryptanalysis; appeared in an IBM internal newsgroup
(CRYPTAN FORUM).

DaGV1 94 Daemen J, Govaerts R, Vandevalle J: Weak keys for IDEA; Crypto '93, LNCS 773, Springer-
Verlag, Berlin 1994, 224-231.

Damg 88 Damgård I B: Collision free hash functions and public key signature schemes; Eurocrypt '87,
LNCS 304, Springer-Verlag, Berlin 1988, 203-216.

DaPr 84 Davies D W, Price W L: Security for Computer Networks, An Introduction to Data Security
in Teleprocessing and Electronic Funds Transfer; John Wiley & Sons, New York 1984.

DaPr 89 Davies D W, Price W I: Security for Computer Networks, An Introduction to Data Security in
Teleprocessing and Electronic Funds Transfer; (2nd ed.) John Wiley & Sons, New York 1989.

DaTa 91 Dawson M H, Tavares S E: An Expanded Set of S-Box Design Criteria Based on Information
Theory and its Relation to Differential-Like Attacks; Eurocrypt '91, LNCS 547, Springer-
Verlag, Berlin 1991, 352-367.

DaWK 81 Davida G I, Wells D J, John B. Kam: A Database Encryption System with Subkeys; ACM
Transactions on Database Systems 6/2 (1981) 312-328.

DaYe 82 Davida G I, Yeh Y: Cryptographic Relational Algebra; Proceedings of the 1982 Symposium
on Security and Privacy, IEEE, 1982, Oakland, California, 111-116.

Denn 82 Denning D E: Cryptography and Data Security; Addison-Wesley Publishing Company,
Reading 1982; Reprinted with corrections, January 1983.

Denn 84 Denning D E: Digital Signatures with RSA and Other Public-Key Cryptosystems;
Communications of the ACM 27/4 (1984) 388-392.

DES 77 : Specification for the Data Encryption Standard; Federal Information Processing Standards
Publication 46 (FIPS PUB 46), January 15, 1977.

DoDS 83 Dolev D, Dwork C, Stockmeyer L: On the Minimal Synchronism Needed for Distributed
Consensus; 24th Symposium on Foundations of Computer Science (FOCS) 1983, IEEE
Computer Society, 1983, 393-402.

DoDS 85 Department of Defense Standard: Department of Defense Trusted Computer System Evaluation
Criteria; December 1985, DOD 5200.28-STD, Supersedes CSC-STD-001-83, dtd 15 Aug 83,
Library No. S225,711.

DSS 91 : Announcing a Digital Signature Standard; Federal Information Processing Standards
Publication (FIPS PUB XX), Draft, August 19, 1991.

DSS1 91 : Comments on DSS; Newgroup sci.crypt, 1991.
ECMA138 ECMA European Computer Manufacturers Association: Standard ECMA-138; Security in

Open Systems – Data Elements and Service Definitions; December 1989.
ElGa 85 Taher ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms; IEEE Transactions on Information Theory 31/4 (1985) 469-472.
FaRa 92 Fabre J C, Randell B: An Object-Oriented View of Fragmented Data Processing for Fault and

Intrusion Tolerance in Distributed Systems; ESORICS '92 (Second European Symposium on
Research in Computer Security), Toulouse, LNCS 648, Springer-Verlag, Berlin 1992, 193-
208.

FoPf 91 Fox D, Pfitzmann B: Effiziente Software-Implementierung des GMR-Signatursystems; Proc.
Verläßliche Informationssysteme (VIS'91), März 1991, Darmstadt, Informatik-Fachberichte
271, Springer-Verlag, Heidelberg 1991, 329-345.

Forr2 90 Forré R: Methods and Instruments for Designing S-Boxes; Journal of Cryptology 2/3 (1990)
115-130.

Fox 91 Fox D: Effiziente Softwareimplementierung asymmetrischer Kryptosysteme und der zu-
grundeliegenden modularen Langzahlarithmetik; Diplomarbeit am Institut für Rechnerentwurf
und Fehlertoleranz der Universität Karlsruhe, April 1991.

Fumy 90 Fumy W: Ein Bausteinkonzept für Schlüsselverteilmechanismen; Datenschutz und
Datensicherung DuD 14/11 (1990) 573-579.

GaJo 79 Garey M R, Johnson D S: Computers and Intractability - A Guide to the Theory of NP-
Completeness; W.H. Freeman and Company, New York 1979.



GaOu 91 Garon G, Outerbridge R: DES Watch: An Examination of the Sufficiency of the Data
Encryption Standard for Financial Institution Information Security in the 1990's; ACM
SIGSAC Review 9/4 (1991) 29-45.

Garf 95 Garfinkel S: PGP Pretty Good Privacy; O'Reilly & Associates, Sebastopol 1995
GiMS 74 Gilbert E N, Mac Williams F J, Sloane N J A: Codes which detect deception; The Bell

System Technical Journal 53/3 (1974) 405-424.
GoMR 88 Goldwasser S, Micali S, Rivest R L: A Digital Signature Scheme Secure Against Adaptive

Chosen-Message Attacks; SIAM J. Comput. 17/2 (1988) 281-308.
Gord 85 Gordon J: Strong Primes are Easy to Find; Eurocrypt '84, LNCS 209, Springer-Verlag, Berlin

1985, 216-223.
HePe 93 van Heyst E, Pedersen T P: How to make efficient Fail-stop signatures; Eurocrypt '92, LNCS

658, Springer-Verlag, Berlin 1993, 366-377.
Herl 78 Herlestam T: Critical Remarks on some Public-Key Cryptosystems; BIT 18 (1978) 493-496.
HLMW 93 Hohl W, Lai X, Meier T, Waldvogel C: Security of Iterated Hash Functions Based on Block

Ciphers; Crypto '93, Pre-proceedings, Santa Barbara, August 1993, 32.1-32.11.
HoGD 85 Hoornaert F, Goubert J, Desmedt Y: Efficient hardware implementation of the DES; Crypto

'84, LNCS 196, Springer-Verlag, Berlin 1985, 147-173.
ISO7498-1 ISO: Management Framework; INTERNATIONAL STANDARD ISO IS 7498-1.
ISO7498-2 ISO: Information processing systems – Open Systems Interconnection – Basic Reference

Model – Part 2: Security Architecture; INTERNATIONAL STANDARD ISO IS 7498-2; First
edition 1989-02-15.

ISO8372 DIN/ISO: Informationsverarbeitung – Betriebsarten für einen 64-bit Blockschlüsselungs-
algorithmus;

ISO8731 ISO 8731-1: Banking – Approved algorithms for message authentication – Part 1: DEA; ISO
International Standard 8371-1; first edition 1. 6. 1987.

ISO8731 ISO 8731-2: Banking – Approved algorithms for message authentication – Part 2: Message
authenticator algorithms; ISO International Standard 8731-2; first edition 15.12.1987.

ISO9594 ISO/IEC: Information Technology–Open Systems Interconnection–The directory Part 1…8;
ISO/IEC International Standard 9594, 1990.

ISO9796 ISO/IEC DIS 9796: Information technology – Security techniques – Digital signature scheme
giving message recovery; International Standard ISO/IEC 9796, Preliminary edition 1991-04-
22.

ISO9797 ISO/IEC: Data Integrity Mechanism Using a Cryptographic Check Function Employing a
Block Cipher Algorithm; ISO/IEC International Standeard 9797, 1989.

ISO9798 ISO/IEC: Information technology – Security techniques – Entity authentication mechanisms –
Part 1: General model; International Standard ISO/IEC 9798-1 (1991).

ISO9979 ISO/IEC 9979-2: Data cryptographic techniques – Procedures for the registration of cryp-
tographic algorithms; ISO/IEC Draft International Standard 9979-2 (1989).

ISO10116 ISO/IEC 10116: Information technology - Modes of operation for an n-bit block cipher al-
gorithm; ISO International Standard, First edition 1.9.1991.

ISO10118 ISO/IEC: Hash Functions - Part 2: Hash Functions Using a Symmetric Block Cipher Al-
gorithm; ISO/IEC Committee Draft 10118-2, 1994.

Jung 87 Jung A: Implementing the RSA Cryptosystem; Computers & Security 6/4 (1987) 342-350.
Kali3 91 Kaliski B S: An Overview of the PKCS Standards; RSA Data Security, Inc., 10 Twin

Dolphin Drive, Redwood City, CA 94065, USA, June 3, 1991.
KaRS 85 Kaliski B S, Rivest R L, Sherman A T: Is the Data Encryption Standard a Group?;

Preliminary Draft, April 6, 1985, paper presented at Eurocrypt '85, Linz, Austria.
KaRS 88 Kaliski B S, Rivest R L, Sherman A T: Is the Data Encryption Standard a Group? (Results of

Cycling Experiments on DES); Journal of Cryptology 1/1 (1988) 3-36.
KFBG 90 Kropf T, Frößl J, Beller W, Giesler T: A Hardware Implementation of a Modified DES-

Algorithm; Microprocessing and Microprogramming 30 (1990) 59-65.
LaMa 91 Lai X, Massey J J: A Proposal for a New Block Encryption Standard; Eurocrypt '90, LNCS

473, Springer-Verlag, Berlin 1991, 389-404.
LaMa2 91 Lai X, Massey J J: Markov Ciphers and Differential Cryptanalysis; Eurocrypt '91, LNCS 547,

Springer-Verlag, Berlin 1991, 17-38.
LaMa 93 Lai X, Massey J J: Hash functions based on block ciphers; Eurocrypt '92, LNCS 658,

Springer-Verlag, Berlin 1993, 55-70.



LeLe_90 Lenstra A K, Lenstra H W: Algorithms in Number Theory; in: Jan van Leeuwen (ed.):
Handbook of Theoretical Computer Science (Vol. A: Algorithms and Complexity); Elsevier
Science Publishers B.V., Amsterdam, 1990, 673-715.

LeMa1 90 Lenstra A K, Manasse M S: Factoring by electronic mail; Eurocrypt '89, LNCS 434,
Springer-Verlag, Berlin 1990, 355-371.

LiPo 91 Lippitsch P, Posch R: PC-RSA, A cryptographic toolkit for MS-DOS; Proc. Verläßliche
Informationssysteme (VIS'91), März 1991, Darmstadt, Informatik-Fachberichte 271, Springer-
Verlag, Heidelberg 1991, 346-354.

LRGR 93 Ligier Y, Ratib O P, Girard C, Rubin P, Rejmer M: A Metropolitan Area Network for
Teleradiology and Remote Expert Consultation based on ISDN; erhalten von Daniel de Roulet.
Eingereicht bei CAR 93.

MaAk 83 MacKinnon S, Akl S G: New Key Generation Algorithms for Multilevel Security;
Proceedings of the 1983 Symposium on Security and Privacy, IEEE, April 25 - 27 1983,
Oakland, California, 72-78.

MeHe 81 Merkle R C, Hellman M E: On the Security of Multiple Encryption; Communications of the
ACM 24/7 (1981) 465-467.

Meie 94 Meier W: On the Security of the IDEA Block Cipher; Eurocrypt '93, Lofthus, Norwegen, Mai
1993, Proceedings, LNCS 765, Springer-Verlag, Berlin 1994, 371-385.

MeMa 82 Meyer C H, Matyas S M: Cryptography - A New Dimension in Computer Data Security; (3rd
printing) John Wiley & Sons, 1982.

Mühl 89 Mühlan M: Portierung, Optimierung und Integration eines Kryptographieprogrammes in eine
Software-Umgebung; Studienarbeit am Institut für Prozeßrechentechnik und Robotik der
Universität Karlsruhe, Februar 1989, Betreuer: Dipl.-Math. M. Spreng.

NaYu 90 Naor M, Yung M: Public-key Cryptosystems Provably Secure against Chosen Ciphertext
Attacks; Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), May 14-16, 1990, Baltimore-Maryland, ACM Press, 427-437.

OhMa 93 Ohta K, Matsui M: Differential Attack on Message Authentication Codes; Crypto '93, Pre-
proceedings, Santa Barbara, August 1993, 19.1-19.11.

OrSA 91 Orup H, Svendsen E, Adreasen E: VICTOR – an efficient RSA hardware implementation;
Eurocrypt '90, LNCS 473, Springer-Verlag, Berlin 1991, 245-252.

ORSP 87 Orton G A, Roy M P, Scott P A, Peppard L E, Tavares S E: VLSI implementation of public-
key encryption algorithms; Crypto '86, LNCS 263, Springer-Verlag, Berlin 1987, 277-301.

PfAß 90 Pfitzmann A, Aßmann R: Efficient Software Implementations of (Generalized) DES;
SECURICOM 90, 8th Worldwide Congress on Computer and Communications Security and
Protection, March 13-16, 1990, Paris, 139-158.

PfAß1 90 Pfitzmann A, Aßmann R: More Efficient Software Implementations of (Generalized) DES;
Interner Bericht 18/90, Fakultät für Informatik, Universität Karlsruhe 1990.

PrGV 93 Preneel B, Govaerts R, Vandewalle J: Hash functions based on block ciphers: a synthetic
approach; Crypto '93, Pre-proceedings, Santa Barbara, August 1993, 31.1-31.11.

PrGV2 93 Preneel B, Govaerts R, Vandewalle J: On the power of memory in the design of collision
resistant hash functions; Auscrypt '92, Gold Coast, Australia, Dezember 1992, Proceedings,
Springer-Verlag, Berlin 1993, 105-121.

PrGV4 93 Preneel B, Govaerts R, Vandewalle J: Differential Cryptanalysis of Hash Functions Based on
Block Ciphers; 1st ACM Conference on Computer and Communications Security, 3.-
5.11.1993, Fairfax, acm press 1993, 183-188.

Pric 88 Price W L: Standards for Data Security – A Change of Direction; Crypto '87, LNCS 293,
Springer-Verlag, Berlin 1988, 3-8.

Pric 90 Price W L: Progress in data security standardisation; Crypto '89, LNCS 435, Springer-Verlag,
Heidelberg 1990, 620-623.

QuCo 82 Quisquater J J, Couvreur C: Fast Decipherment Algorithm for RSA Public-Key
Cryptosystem; Electronics Letters 18/21 (1982) 905-907.

Resc 91 Rescrypt: Werbeblätter der ersten Kryptofirma der UDSSR; erhalten auf Crypto 91.
RiAD 78 Rivest R L, Adleman L, Dertouzos M L: On Data Banks and Privacy Homomorphisms;

Foundations of Secure Computation, ed. by R.A. DeMillo, D.P. Dobkin, A.K. Jones, R.J.
Lipton; Academic Press, N.Y. 1978, 169-177.

RIPE1 93 RIPE Consortium: RIPE integrity primitives Part 1: Final report of RACE 1040; Centrum
voor Wiskunde en Informatica, Computer Science/Departement of Algorithmics and Archi-
tecture, Report CS-R9324, April 1993.



RIPE2 93 RIPE Consortium: RIPE integrity primitives Part 2: Final report of RACE 1040; Centrum
voor Wiskunde en Informatica, Computer Science/Departement of Algorithmics and Archi-
tecture, Report CS-R9325, April 1993.

Rive 78 Rivest R L: Remarks on a Proposed Cryptanalytic Attack on the M.I.T. Public-Key
Cryptosystem; Cryptologia 2/1 (1978) 62-65.

Rive 79 Rivest R L: Critical Remarks on "Critical Remarks on some Public-Key Cryptosystems" by
T. Herlestam; BIT 19 (1979) 274-275.

Rive 91 Rivest R L: MD5 – New Message-Digest Algorithm (Abstract); vorgetragen auf Crypto '91,
Rump Session, 13. 8. 1991.

Rive2 91 Rivest R L: The MD4 Message Digest Algorithm; Crypto '90, LNCS 537, Springer-Verlag,
Berlin 1991, 303-311.

Rive4 91 Rivest R L: Letter on the Key Size of DSA; ACM SIGACT News 22/4 (1991) 43-47.
RSA 78 Rivest R L, Shamir A, Adleman L: A Method for Obtaining Digital Signatures and Public-

Key Cryptosystems; Communications of the ACM 21/2 (1978) 120-126, reprinted: 26/1
(1983) 96-99.

RSAD 91 RSA Data Security, Inc.: PKCS #1..#9: RSA Encryption Standard, Version 1.4; 10 Twin
Dolphin Drive, Redwood City, CA 94065, USA, June 3, 1991.

SAFE 90 DuD Report: DES-Board für 600 Mark; Datenschutz und Datensicherung DuD 14/4 (1990)
225.

Sand 88 Sandhu R S: Cryptographic implementation of a tree hierarchy for access control; Information
Processing Letters 27 (1988) 95-98.

Schn 91 Schnorr C P: Efficient Signature Generation by Smart Cards; Journal of Cryptology 4/3
(1991) 161-174.

Schn 93 Schneier B: Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley
& Sons, New York 1994.

Sedl 88 Sedlak H: The RSA cryptography processor; Eurocrypt '87, LNCS 304, Springer-Verlag,
Berlin 1988, 95-105.

Sham 79 Shamir A: How to Share a Secret; Communications of the ACM 22/11 (1979) 612-613.
Sham 85 Shamir A: Identity-Based Cryptosystems and Signature Schemes; Crypto '84, LNCS 196,

Springer-Verlag, Berlin 1985, 47-53.
SHS 92 NIST: Secure Hash Standard (SHS); NIST Federal Register, 31.1.1992;
Simm1 92 Simmons G J: A Survey of Information Authentication; Gustavus J. Simmons: Contempora-

ry Cryptology – The Science of Information Integrity; IEEE Press, Hoes Lane 1992, 379-419.
SiNo 77 Simmons G J, Norris M J: Preliminary Comments on the MIT Public-Key Cryptosystem;

Cryptologia 1 (1977) 406-414.
Stel 86 Stelbrink J: Datensicherheit muß nicht teuer sein; Elektronik, Fachzeitschrift für Entwickler

und industrielle Anwender 10. Januar 1986, 39-45.
VHVD 88 Verbauwhede I, Hoornaert F, Vandewalle J, De Man H: Security considerations in the design

and implementation of a new DES chip; Eurocrypt '87, LNCS 304, Springer-Verlag, Berlin
1988, 287-300.

VVDJ 90 Vandemeulebroecke A, Vanzieleghem E, Denayer T, Jespers P G A: A single chip 1024 bits
RSA processor; Eurocrypt '89, LNCS 434, Springer-Verlag, Berlin 1990, 219-236.

WaP1 86 Wagner N R, Putter P S, Cain M R: Encrypted Database Design: Specialized Approaches;
IEEE Symposium on Security and Privacy, 1986, 148-153.

WaQu 91 de Waleffe D, Quisquater J J: Corsair: A Smart Card for Public Key Cryptosystems; Crypto
'90, LNCS 537, Springer-Verlag, Berlin 1991, 502-513.

WeCa 81 Wegman M N, Carter J L: New Hash Functions and Their Use in Authentication and Set
Equality; Journal of Computer and System Sciences 22 (1981) 265-279.

WeTa 86 Webster A F, Tavares S E: On the Design of S-Boxes; Crypto '85, LNCS 218, Springer-
Verlag, Berlin 1986, 523-534.

Wien1 90 Wiener M J: Cryptanalysis of short RSA secret exponents; Eurocrypt '89, LNCS 434,
Springer-Verlag, Berlin 1990, 372.

WiSc 79 Williams H C, Schmid B: Some remarks concerning the M.I.T. public-key cryptosystem; BIT
19 (1979) 525-538.

Zim1 86 Zimmermann P: A Proposed Standard for RSA Cryptosystems; Computer 23/9 (1986) 21-34.


