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Abstract

A contract is a non-repudiable agreement on a given contract text, i.e., a contract can be used to
prove agreement between its signatories to any verifier. A contract signing scheme is used to fairly
compute a contract so that, even if one of the signatories misbehaves, either both or none of the
signatories obtain a contract.

Optimistic contract signing protocols use a third party to ensure fairness, but in such a way
that the third party is not actively involved in the fault-less case. Since no satisfactory protocols
without any third party exist, this seems to be the best one can hope for.

We prove tight lower bounds on the message and round complexity of optimistic contract
signing on synchronous and asynchronous networks, and present new and efficient protocols
based on digital signatures which achieve provably optimal efficiency.

Furthermore, we investigate what can be gained if the third party participates in the contract
verification.



1 Introduction

A contract is a non-repudiable agreement on a given text [Blum 81]. A contract signing scheme
includes at least three players and two protocols: Two signatories participate in a contract signing
protocol “sign” which fairly computes a contract. This contract can then be used as input to a
contract verification protocol “show” to convince any verifier such as a court that the signatories
reached agreement on the given text.

Note that unlike cryptographic contract signing protocols [Blum 81], our notion does not tol-
erate uncertainty about the outcome. In the end, the user must have a definitive answer whether
a valid contract was produced or not. Furthermore, we achieve deterministic fairness if the un-
derlying digital signature scheme is secure.

In all practical schemes, contract signing involves an additional player, called third party. This
party is (at least to some extent) trusted to behave correctly, thus playing the role of a notary in
paper-based contract signing. A well-known protocol for contract signing by exchanging signa-
tures via a third party works as follows (see also Scheme 4): Both signatories send their signatures
to the third party. The third party then verifies and forwards them. At the end, both signatories
end up having two signatures on the contract which may be sent to any verifier for verification.
In this and similar protocols, the third party has to be involved in all executions of the contract
signing protocol.

In order to minimize this involvement while guaranteeing fairness, the concept of so called
“optimistic” protocols has been introduced [AsSW 97, BGMR 90]'. The basic idea of optimistic
schemes? is that the third party is not needed in the fault-less case: After the execution of the
optimistic signing protocol, two correct signatories always end up with a valid contract. Only
if one of the signatories misbehaves, the third party is involved to decide on the validity of the
contract.

1.1 Related Work

The term “contract signing” was first introduced in [Blum 81]. In [EvYa 80], it was shown that no
deterministic contract signing scheme (called “public-key agreement system” in [EvYa 80]) with-
out third party exists if the verifier is state-less and only the two signatories participate in the
contract signing protocol.

Contract signing without third party: Early research focused on probabilistic contract signing
schemes based on gradual exchange of signatures [Blum 81, Blu2 83, EvGL 85, Gold 83] (see [Damg 95]
for recent results): Both signatories exchange signatures “bit-by-bit.” If one signatory stops pre-
maturely, both signatories have about the same fraction of the peer’s signature, which means they
can complete the contract offline by investing about the same amount of work.

As pointed out in [BGMR 90], this approach is not satisfactory in real life: Consider, for exam-
ple, a house selling contract. If the protocol stops prematurely, the seller cannot be sure whether
the buyer will invest some years to complete the contract or not, i.e., whether the seller still owns
the house and can look for another buyer or not. Thus, the seller is actually forced to take a high
risk, or to complete the contract.

Contract signing with third party: Simple schemes for contract signing use an online third party,
i.e, one that is actively involved in each run.

'This paper includes the first author’s notes on contract signing that were referred to in [AsSW 97].
?See also [BiiPf 89, BiiPf 90] for optimistic protocols for payment for receipt or goods, or [Mica 97, ZhGo 97] for
recent optimistic protocols for certified mail, i.e., a fair exchange of a message for a signature on a receipt.



Optimistic contract signing with third party: The first somewhat?® optimistic scheme has been de-
scribed in [Even 83]. The first optimistic scheme in our sense is based on gradual increase of privi-
lege [BGMR 90]: In n message exchanges, the probability with which a contract is valid is gradually
increased from 0 to 1. If the protocol stops prematurely, each signatory can invoke a third party
called “judge.” The third party will wait until the protocol would have terminated (i.e., we are in
a synchronous model). After this timeout, the third party picks a random value p in the interval
[0,1], or retrieves it in case the third party was invoked for this contract before. If the probability
given by the last message received by the invoking party is at least p, the contract is considered
valid and an affidavit is issued and sent to both signatories. Otherwise the contract is considered
invalid. By construction, if the protocol is prematurely stopped, one party might be “privileged”,
i.e., has a slight advantage when invoking the judge: If the third party chooses a p that lies be-
tween the probabilities of the two signatories, only one of them can finalize the contract. Thus,
if a correct player A invokes the third party and gets the answer that the contract is invalid, she
cannot be sure that the same would happen if B invokes the third party, i.e., that the contract is
indeed not signed. In the worst case, B might have a valid contract (i.e., probability 1) and hence
knows that if A complains, it will succeed only with the probability contained in the last message
sent by B. The probability that such an uncertain situation arises is non-negligible, but linearly
small in the number of messages exchanged [BGMR 90]. In the house-selling example mentioned
above, such a non-negligible error would probably not be acceptable for the seller.

Recent research concentrated on optimistic contract signing schemes that avoid such uncer-
tain situations, and guarantee a definite decision within limited time: [AsSW 97] describes a syn-
chronous contract signing protocol with four messages. This was improved in [AsSW3 97] to a
four-message protocol for asynchronous networks. Compared to this earlier work, the focus of
this paper is on proving bounds on the message- and time-complexity of optimistic contract sign-
ing protocols for different models?.

Commit Protocols: Compared to commit-protocols [SiKS 97] for atomicity of distributed trans-
actions, contract signing aims at a non-repudiable agreement while assuming a byzantine failure
model, i.e., even if most signatories are malicious, contract signing guarantees a correct outcome
for correct signatories whereas commit-protocol do not.

Agreement Protocols: Contract signing achieves more than just agreement [PeSL 80]: besides
reaching agreement, the players also want to be able to prove it afterwards.

Remark: Fair exchange of signatures® and fair contract signing are different problems since contract
signing does not require a contract to be a text and two signatures. Obviously, contract signing can
always be implemented based on fair exchange of signatures, but not all contract signing schemes
exchange signatures. They only guarantee non-repudiation of the agreement on a contract.

1.2 Ouwur Results

We present new and efficient optimistic contract signing schemes and prove that their efficiency
with respect to messages or time is optimal if the signatories are correct and agree on the contract.
Furthermore, we prove some bounds and limitations on optimistic contract signing in general.
All our schemes are based on an arbitrary digital signature scheme. Tables 1 and 2 give a detailed
summary of our results: We present a message- (3 messages) and a round-optimal (2 rounds)

31t assumes that verification is a three-party protocol, i.e., that the contract is not valid on its own but only if a third
party called “center of cancellation” does not object.

“For similar research on authentication protocols see [Gong?2 95].

SEach player A receives a digital signature sigg (C) if and only if the other signatory B receives sig,(C), too.



Model Our Results

C T Op t(H) () Optimal Proof

s sl +| 3 3 |Scheme 1l Theorem 1
s sl +| 2 4 | Scheme 2 Theorem 1
a sl + Impossible Theorem 4
a sk (+)| 4 4 |See [AsSW397] Theorem 2
a sk (+)| 3 6 |Scheme 3 Theorem 3
a sk -—-1]2 4 |Scheme 4 Theorem 5
s d,sk (+)| 1 2 | Scheme 5 Theorem 6
a d, sk (+)| 3 3 |Scheme 6 Theorem 7

Legend:
C Communication Model: “s” for synchronous, “a” for asynchronous.

T Properties of the third party: “sl” for state-less, “sk” for state-keeping, “d” if the third
party is required to participate in verification.

Op “+” stands for optimistic protocols (Def. 5), “(+)” stands for optimistic on agreement
(Def. 6), and “~” stands for non-optimistic protocols (Def. 3).

t(H)  Time for the output of a contract if the signatories agree (underlined figures are provably
optimal, which is proven in the mentioned Theorem).

m{+t) Number of messages in case of agreement.

Table 1: Provably Optimal Schemes By Model.

Theorem Model Result

No. C T Opt|th) m{+)
1 s sk (+) >3

1 s sk (+)[>3 « =3

1 s sk (+)|>2

2 a sk ) >4

3 a sk (+)|>3

3 a sk #)|=3 > >6

4 a sl (+) |Does not exist
5 a sk - >4

5 a sk - [>2

6 s d,sk (+) >2

7 a d,sk (+) >3

7 adsk (+)|>3 « =3

Table 2: Our Theorems and What They Prove (Legend: See Table 1).




synchronous optimistic contract signing scheme as well as a time-optimal (time 3) asynchronous
scheme. We prove the optimality of these new schemes as well as the optimality of the scheme
described in [AsSW3 97] by proving tight bounds on message and time complexity of synchronous
and asynchronous optimistic contract signing. Furthermore, we show that each message/time-
optimal protocol is optimal with respect to time/messages given the message/time limitation. In
Theorem 4 we show that no asynchronous optimistic contract signing scheme with state-less third
party exists.

Finally, we compare the efficiency of the optimistic protocols with the efficiency of a well-
known asynchronous non-optimistic scheme (4 messages in time 2) under the assumption that
both signatories agree and do not misbehave. This shows that optimistic protocols achieve similar
efficiency without interacting with a third party.

After these results for optimistic contract signing, we investigate what changes result from
allowing the third party to participate in the verification protocol. We show that the optimistic
scheme from [Even 83] with 1 round and 2 messages is optimal on a synchronous network whereas
on an asynchronous network, one needs three messages in three rounds.

2 Definitions

2.1 Network Models and Protocol Complexity

We distinguish between the “standard” synchronous and asynchronous network models [Lync 96,
Tel 91]. On synchronous networks, messages are guaranteed to be delivered within a so-called
“round”, i.e., a recipient of a message can decide whether a message was sent or not. This cannot
be decided on asynchronous networks since messages may be delayed and reordered arbitrarily.
For machines, we assume a byzantine failure model, i.e., a faulty machine may send arbitrary
messages but must not be able to prevent delivery of messages between two correct machines. The
time-complexity of a synchronous protocol is the number of rounds required for its execution. The
time-complexity of an asynchronous protocol is the time required for its execution if transmission
of each message requires time 1 and local computations require no time.

We assume that the network is reliable, i.e., that all messages sent between correct machines
are eventually delivered. In asynchronous networks there is no notion of global time, no time-
limit on the time needed for message transmission, and there is no guarantee that messages are
delivered in the same order they were sent.

For both network types, we assume that each algorithm receives its messages from other algo-
rithms and its local inputs, then does a computation on them and outputs at most one local output
and one message for each other algorithm.

The time-complexity sketched above is formalized by defining a logical time [Lync 96]:

Definition 1 (Time Complexity)
The time complexity of a protocol is defined to be the highest clock assignment at the end of the
protocol obtained by the following rules:

1. Each machine participating in the protocol has a time assignment ¢time € IN and a mode
assignment mode € {send, receive}. In send-mode, messages can only be sent. In receive-
mode, messages can only be received. Initially, time := 0 and mode := receive is assigned.

2. The time assignment of an algorithm is increased whenever an event happens.



Unlike Lamport’s time-stamps [Lamp 78], an event here is defined as “changing from receive-

mode to send-mode”. Consecutive send or receive operations as well as changes from send

to receive mode do not change the local clock.

The assigned time of the local clock of the sender is assigned to every message sent.

4. Whenever a time-stamp higher than the local time assignment has been assigned to a re-
ceived message, the local ¢ime assignment is set to the time assigned to the received mes-
sage.

W

O

For synchronous communication, we make the additional assumptions that there is a global no-
tion of rounds and each message sent in round i by an correct player is delivered as input to
round ¢ 4+ 1. This enables a receiver to decide whether a message has been sent or not. We as-
sume that messages which do not arrive in their designated round are ignored. Note that in the
synchronous model, the time-complexity defined by Definition 1 equals the minimum number of
rounds needed for the protocol.

2.2 Contract Signing

We now give a formal definition of contract signing and describe the requirements we want to
achieve.

Definition 2 (Contract Signing Scheme)

A contract signing scheme for a message space M and a set of transaction identifiers T/D:s is a triple
(A, B,V) of probabilistic interactive algorithms (such as probabilistic interactive Turing Machines)
where V is state-less, i.e., has no memory between subsequent protocol runs. The algorithms A
and B are called signatories, and V is called verifier. The algorithms can carry out two interactive
protocols:

Contract Signing (Protocol “sign”): Each signatory X € {A,B} obtains a local input (sign, Cx,
tid), where sign indicates that the “sign”-protocol shall be executed, Cx € M is the contract
text X wants to sign, and tid € TIDs is the common unique6 transaction identifier which
is used to distinguish in- and outputs as well as messages from different protocol runs and
which signals that both inputs belong together. At the end, each of A and B returns a local
output, which can take the following values: (signed, C, tid) containing a contract text C or
(rejected, tid).

Verification (Protocol “show”): This is the contract verification protocol between the verifier V and
one of the signatories A or B”. The signatory, say A, obtains a local input (show, tid). A does
not make a local output. The verifier V outputs either (signed, C, tid) or (rejected, tid).

O

Intuitively, an output (signed, C, tid) of the “sign”-protocol means that the user can now safely
act upon the assumption that a contract “C” has been signed, i.e., that a subsequent verification
will succeed. If the protocol outputs (rejected, tid), the user can safely assume that no contract
was signed, i.e., the other signatory will not be able to pass verification.

®The parties must have agreed upon this before starting a contract signing protocol. A common method to guarantee
uniqueness is to use a pair of two locally unique numbers as the global transaction identifier. In practice, a separate
agreement on a tid may not be necessary since contract signing will be part of a larger commerce protocol.

"Here, we restrict our model for the moment to two-party verification: Three-party verification between A or B, V,
and a third party is considered in Section 7.



We now define the security requirements for contract signing depending on the underlying
network. Since on asynchronous networks, nobody can decide whether the input will eventu-
ally arrive or not, termination cannot be guaranteed in general. Therefore, we allow the user to
“switch” the model manually: After a local input (wakeup, tid), the protocol stops waiting for
pending messages and is required to terminate with a correct output. In practice, wakeup can be
produced by a local time-out or by an interaction with the user.

Definition 3 (Fair Contract Signing)
A contract signing scheme (Def. 2) is called fair if it fulfills the following requirements:

Correct Execution: Consider an execution of “sign” by two correct signatories A and B on input
(sign, Ca, tid) to A and (sign, Cp, tid) to B with a unique and fresh tid € TIDs and C4,Cp €
M. Then, the “sign”-protocol outputs (signed, Ca, tid) iff C4 = Cp or else (rejected, tid) to
both signatories if none inputs wakeup.

Unforgeability of Contracts: If a correct signatory, say A, did not receive an input (sign, C, tid) so
far, a correct verifier V will not output (signed, C, tid).

Verifiability of Valid Contracts: If a correct signatory, say A, output (signed, C, tid) and later exe-
cutes “show” on input (show, tid) then any correct verifier V will output (signed, C, tid).

No Surprises with Invalid Contracts: 1f a correct signatory, say A, output (rejected, tid) then no
correct verifier will output (signed, C, tid) for any C.

Termination on Synchronous Network: A correct signatory, say A, will either output (rejected, tid)
or (signed, Cy4, tid) after a fixed number of rounds.

Termination on Asynchronous Network: On input (wakeup, tid), a correct signatory, say A, will ei-
ther output (signed, Cy, tid) or (rejected, tid) after a fixed time.
O

The requirement on “Verifiability of Valid Contracts” models that a contract that was ever declared
signed by a correct signatory cannot be invalidated again. This means that one can safely buy a
new house with the money if the protocol output signed. Similarly, the requirement on “No Sur-
prises with Invalid Contracts” models that a contract which was ever declared rejected cannot
be declared signed afterwards. This means that one can safely look for another buyer for the old
house if one thinks no contract was signed. The “Unforgeability” requirement models that no
valid contract can be produced without participation of a correct signatory.

Since it was mentioned in the literature [Even 83], we now define a weaker notion of con-
tract signing schemes which enables more efficient but less practical protocols which we will later
compare with our more restricted notion of a contract signing scheme:

Definition 4 (Contract Signing Scheme with Three-Party Verification)
A contract signing scheme with three-party verification is a contract signing scheme (Definition 2)
where the definition of the verification protocol is changed as follows:

Verification (Protocol “show”): This is the contract verification protocol between the verifier V, the
third party T, and one of the signatories A or B. The signatory, say A, obtains a local input
(show, tid). A does not make a local output. The verifier V outputs either (signed, C, tid) or
(rejected, tid).

O

This changed model enables the third party to participate in the verification protocol which
enables us to revoke sent parts of a contract: The basic mechanism used for revoking a signature

6



works as follows: Once a party signed its part of a contract for a given contract signing execution
identified by tid, the third party may tag this execution as being revoked if one of the signatories
misbehaves. If somebody presents a contract containing this tid to a verifier, the verifier asks the
third party if this execution has been revoked or not. If the contract is correct and the execution
has not been revoked, the verifier decides on signed and else on rejected.

Recall, however, that we maintain the “Termination”-Requirement, i.e., for honest parties, re-
vocations must not make any difference after the “sign”—protocol terminated.

2.3 Optimistic Contract Signing

To guarantee fairness, “optimistic contract signing” includes an additional third party T which is
assumed to be correct in order to guarantee fairness. We try to limit the involvement of this third
party by distinguishing two phases of the “sign”-protocol:

The optimistic phase tries to produce a contract without contacting the third party. Since a
contract requires inputs from both signatories, this protocol may not terminate on asynchronous
networks if a peer is not correct.

The error recovery phase is started if an exception, such as a wrong or missing message or the
input of wakeup, occurs. In this phase, the third party is asked to guarantee a fair decision in a
limited time. In our schemes, this phase is implemented by a sub-protocol called “resolve”.

Definition 5 (Optimistic Contract Signing)
A fair contract signing scheme (Def. 3) is called optimistic iff an additional correct player T partici-
pates in the “sign”-protocol so that one of the following requirements is fulfilled:

Optimistic on Synchronous Network: 1f both signatories are correct, the third party does not send
or receive messages in the “sign”-protocol.

Optimistic on Asynchronous Network: 1f both signatories are correct and do not input (wakeup,
tid), the third party does not send or receive messages in the “sign”-protocol.

O

The requirement that wakeup must not be input on asynchronous networks models that a user has
to be patient in order to enable the protocol to terminate without involving the third party: If a
user inputs wakeup immediately, the protocol may always involve the third party.

A weaker notion of optimistic contract signing requires optimistic execution only if the signa-
tories input identical contract texts:

Definition 6 (Optimistic on Agreement)
A fair contract signing scheme (Def. 3) is called optimistic on agreement iff an additional correct
player T participates in the “sign”-protocol so that one of the following requirements is fulfilled:

Optimistic on Synchronous Network: 1f both signatories are correct and both input (sign, C, tid)

with a fresh and unique tid and a C' € M, the third party does not send or receive messages in
the “sign”-protocol.

Optimistic on Asynchronous Network: 1f both signatories are correct and both input (sign, C, tid)

with a fresh and unique tid and a C € M and do not input (wakeup, tid), the third party does
not send or receive messages in the “sign”-protocol.

O



2.4 Notations and Assumptions

All our schemes are based on a secure digital signature scheme [GoMR 88, RSA 78] where sigy (m)
denotes X’s signature under message m. Each party can sign messages, and can verify messages
signed by others. All our protocols and definitions are formulated as if these digital signatures
would provide error-free authentication. Furthermore, we assume tacitly that sequence numbers,
names of participants, and the tid are included into all signed messages and that the signatures
contained in messages are verified upon receipt. Corrupted or unexpected messages are just ig-
nored.

All schemes are described by means of the message flows in the optimistic case, detailed de-
scriptions of all protocols as well as figures of the states and transitions of the machines for signa-
tories and third party. The verifier is not depicted as a state-machine but only described in the text:
It is state-less and has only one state. In order to avoid unnecessarily complicated descriptions,
we assume that the parties involved are a priori fixed. For synchronous protocols, we furthermore
assume that all parties agree on the starting round of a protocol which is included in all messages.

In our figures, @ %’ ® depicts that a machine is in state A and receives message called a.
It sends message called b and changes to state B. Dashed arrows denote exception handling by
means of executing “resolve”. If the message name is bold, the message is exchanged with the
third party. Subscripts in message names usually denote the time at which they are sent (e.g., m3
would be a message from round 3). Bold states are final states. If a message a is nof received on a
synchronous network, this is modeled by receiving the message —a.

3 A Message-Optimal Synchronous Scheme

Our message-optimal optimistic scheme® for synchronous networks requires three messages in
the optimistic case using a state-less third party. Its optimistic behavior is depicted in Figure 1.
The individual machines of the players are depicted in Figures 2, 4, and 3.

Scheme 1 (Message-Optimal Synchronous)
This scheme consists of the triple (A, B,V) and T of interactive probabilistic machines which are
able to execute the protocols defined as follows:

Contract Signing (Protocol “sign”; Figure 1): On input (sign, C4, tid), the signatory A initiates
the protocol by sending the signed’ message m; := siga (Ca) with contract C4 to the respond-
ing signatory B. B receives the input (sign, Cp, tid) and message m; and verifies whether
the received contract text C'4 is identical to the input contract text Cz. If not, the players dis-
agree about the contract and B returns (rejected, tid). Else, it signs the received message
and sends it as mg := sigg(m;) to A. Player A then signs the received message again, sends
it as mg := sigp (me2) back and outputs (signed, C, tid). On receipt of message ms, B outputs
(signed, C, tid) as well. After a successful execution of this optimistic protocol, A and B store
mg under the tid for later use in a verification protocol.

If A does not receive message my it waits until Round 5, and, if ms was not received, it outputs
(rejected, tid). If B did not receive message ms3, it may be that A nevertheless was able to

The message flows are similar to the optimistic protocol in [Mica 97] which provides certified mail instead of con-
tract signing.

Note that in our protocols, the contract and the contents of most messages are fixed after the first message sent by
a signatory. Therefore, each player can save signatures by including commitments to random authenticators r; into the
initial message which are then released instead of signing messages [AsSW 97].

8



Signatory A Signatory B
m1
\
not ok: rejected
m2
_—
not ok and no ms:
rejected
else signed.
ms
—
not ok: “resolve”
else signed.

Figure 1: Optimistic Behavior of the Message-Optimal Synchronous Scheme 1.
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m2i ms/signed

\ P
------ &
-ms/rejected

Figure 2: Signatory A of Scheme 1.

compute a valid contract m3 after receiving mg. Therefore it starts the “resolve”-protocol to
invoke the third party to guarantee fairness.

Recovery from Exceptions (Sub-Protocol “resolve”): B sends a message m4 := sigg(mg) containing
m and mg to the third party T. The third party checks whether both players agreed and then
forwards mgy in ms := mg to A which might still wait for it. This guarantees that A receives a
valid contract mg :=sigs(mg) and outputs (signed, C4, tid). Furthermore T sends an affidavit
on mg in mf := sigt(me) to B and B outputs (signed, C, tid). After the “resolve”-protocol, A
keeps mg and B keeps mj, to be used in later verification protocol executions.

Verification of a Contract (Protocol “show”): On input (show, tid), a signatory looks up ms or mf

and sends it to the verifier. The verifier verifies it and outputs (signed, C, tid) if this succeeds
and (rejected, tid) else.

O

Lemma 1 (Security of Scheme 1)

Scheme 1 is a synchronous fair optimistic contract signing scheme. <

Proof of Lemma 1: The scheme adheres to Definition 2 by construction. We now show that each of
the requirements described in Definitions 3 and 5 are fulfilled:




show/m3 orm's .

. S|gn/ m1/m2 ‘ m3/3|gneg ‘

—-m3/m4l m 5/3|gned

ol
=m 5/rejected

Figure 3: Signatory B of Scheme 1.

(sar) a-mmee

\/{m4/(m5, m's) )
AN /

Figure 4: Third Party T of Scheme 1.

Correct Execution: If both correct players A and B input (sign, C, tid) with identical tid and
C, then both receive a valid contract m3 and output (signed, C, tid). If the contracts or tid’s
differ, B outputs (rejected, tid g) after receiving m; and A outputs (rejected, tid 4) after not
receiving ms in Round 5.

Unforgeability of Contracts: In order to convince a correct verifier V for a given tid, one needs
correct messages m3 or my for this tid. Since mg as well as mg contain signatures from both
participants, a correct signatory input (sign, C, tid).

Verifiability of Valid Contracts: 1f A outputs (signed, C, tid) then it received ms (or ms containing
mz) which will be accepted by the verifier as a correct contract m3 after being signed by A. B
outputs (signed, C, tid) only if it received mg or mj which are accepted, too.

No Surprises with Invalid Contracts: Let us first assume that a correct signatory A returned rejected
oninput (sign, C, tid) whereas B is able to convince the verifier. This requires that B knows ms3
or mj for the given tid and C. Since A returned rejected, it did not receive mgy until Round 5
and it did not send m3. Therefore, only mj could lead to successful verification. However, if
the third party was correct, it will not accept recovery requests from B after Round 4. Further-
more, in Round 4, no recovery was started since A did not receive mjs in Round 5. Thus B did
not receive mj in Round 5. Now let us assume secondly that A invokes “resolve”. This would
not cause problems since in this case, A needs mg. Thus the contract will be validated anyway:
Either B receives ms or it will start “resolve”, too.

Termination on Synchronous Network: The scheme requires at most 5 rounds (3 in “sign” and 2 in
“resolve”) to terminate.

Optimistic on Synchronous Network: 1f two correct signatories input (sign, C, tid), signatory A
outputs (signed, C, tid) after round 2 whereas player B outputs (signed, C, tid) after round 3.
If they disagree, i.e., input different contracts, A outputs (rejected, tid) after Round 5 and B
after Round 1 without contacting the third party by starting “resolve”.
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We now show that no optimistic contract signing scheme with only two messages exists. This
proves that the number of messages of Scheme 1 is optimal. Furthermore, we show that it cannot
be done with three messages in two rounds. Thus, the number of rounds of Scheme 1 is optimal,
too, given the restriction to 3 messages.

Theorem 1 (Optimality of Scheme 1)

In the synchronous model with state-keeping third party, there exists no contract signing scheme
which is optimistic on agreement with a “sign”—protocol with less than 3 messages in case of
agreement and a protocol which needs 3 messages needs at least 3 rounds. <

Proof of Theorem 1: Let us assume that there exists an optimistic contract signing scheme which
requires three messages in two rounds in case of agreement. In the optimistic phase, one player,
say B, sends two messages m1p in Round 1 and msp in Round 2.

Let us first assume that A sends its single message m 4 in Round 1. Since two correct players
who input identical contracts C'4 = Cp must not contact the third party this means that the single
message m 4 from A needs to be sufficient to enable B to convince the verifier. Now assume that
an incorrect B receives the valid contract m 4 but sends nothing. Then A must be able to obtain a
valid contract since the contract m 4 sent to B cannot be invalidated again (verification is a protocol
between B and the state-less verifier V only). Therefore, player A needs to be able to start recovery
without any input from B and a dishonest B must not be able to prevent this. This would enable
A to forge a contract.

If we now assume, on the other hand, that A sends m4 in Round 2, m4 and myp must be
valid contracts, i.e., sufficient for “show”. If A now omits sending m 4, it will end up with a valid
contract. Therefore B must be enabled to run “resolve” if A did not send its only message. The
resulting recovery without any message from A, however, again contradicts the unforgeability
requirement. Thus no protocol with 3 messages in 2 rounds exist.

If a two-message scheme exists, adding an empty message would produce a 3 message scheme
in 2 rounds which does not exist. =

4 A Round-Optimal Synchronous Scheme

We now describe the round-optimal Scheme 2 for synchronous networks and prove its security
in Lemma 2. It requires only two rounds but four messages. Since any three-message “sign”-
protocol needs at least three rounds (Theorem 1), there exists no one-round protocol at all and no
2-round protocol with only three messages. So the scheme described is optimal with respect to
rounds and given the limitation to two rounds also with respect to the number of messages. The
optimistic behavior of the scheme is depicted in Figure 5. The players are depicted in Figures 6
and 7.

Scheme 2 (Round-Optimal Synchronous)
This scheme consists of the triple (A, B,V) and T of interactive probabilistic machines which are
able to execute the protocols defined as follows:

Contract Signing (Protocol “sign”; Figure 5): On input (sign, Cy, tid) a signatory, say A, sends
message m1 4 :=siga(C4) in the first round. If it does not receive a message m1p with C4 = Chp,
it waits for recovery message m4 and outputs (rejected, tid) if m4 is not received in Round
4. If a message mip with C4 = Cp is received, is sends mgy := sigp(m14, m1g) in the second
round and waits for mop. If mop with a correct contract text C4 = Cp is received, it outputs
(signed Cy, tid). Else, it starts “resolve”.
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Signatory A Signatory B

not ok and no my: not ok and no my:
rejected rejected.

m2A m2B
if ok: signed if ok: signed
else: “resolve”. else: “resolve”.

Figure 5: Optimistic Behavior of the Round-Optimal Synchronous Scheme 2.
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Figure 6: Signatory, e.g., A, of Scheme 2.
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Figure 7: Third Party T of Scheme 2.

Recovery from Exceptions (Sub-Protocol “resolve”): A signatory, say A, sends mg34 := ma4 to the
third party which verifies its consistency and signs an affidavit. This affidavit is sent as my4 :=
sigT(mg4) to both parties. If the parties receive an affidavit in Round 4, they output (signed,
C, tid). Else, they output (rejected, tid).

Verification of a Contract (Protocol “show”): Oninput (show, ¢id), a signatory, say A, looks up (maa,
mop) or my and sends it to the verifier V. The verifier checks that the signatures are correct. If
these checks fail, it outputs (rejected, tid) and else (signed, C, tid).

O

Lemma 2 (Security of Scheme 2)
Scheme 2 is a synchronous fair optimistic contract signing scheme. <

Proof of Lemma 2: The scheme adheres to Definition 2 by construction. We now show that it fulfills
the requirements stated in Definitions 3 and 5:

Correct Execution: 1f both players behave correctly and input identical ¢id’s and contracts, each
signatory, say A, receives m;p and mgp. Thus, the protocol outputs (signed, C, tid) on both
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machines. If the signatories disagree, both will receive inconsistent messages in Round 1 and
will wait for recovery until Round 4. Since no recovery message m4 will be received, they will
output (rejected, tid).

Unforgeability of Contracts: In order to convince a correct verifier, a signatory, say A, needs (ma24,
mgp) Or my. Since (mga, mopg) as well as my4 contain signatures from both signatories, a correct
signatory input (sign, C, tid).

Verifiability of Valid Contracts: A signatory, say A, only outputs (signed, C, tid) after receiving my
or after sending ms4 and receiving mop. Thus, they are able to convince the verifier.

No Surprises with Invalid Contracts: 1f a signatory, say A, decides rejected, this signatory did not
start “resolve” and did not receive m,4 in Round 4 which means that B also did not receive
my4. In order to convince a verifier, B therefore needs mo4. However, since A output rejected,
it did not send mo4.

Termination on Synchronous Network: At most 4 rounds are required for termination.

Optimistic on Synchronous Network: If two correct signatories input (sign, C, tid), they output
(signed, C, tid) after round 2 without contacting the third party. If they disagree, they output
(rejected, tid) after round 4 without contacting the third party.

5 A Time-Optimal Asynchronous Scheme

We now describe a new time-optimal asynchronous contract signing scheme. It terminates in time
3 and requires six messages in the optimistic case. In Theorem 3 we prove that this is time-optimal.
Its optimistic behavior is sketched in Figure 8, the machines are depicted in Figures 9 and 10. Note
that the third party is state-keeping: Once a contract is accepted (i.e., m§ or m{ was sent), the third
party enters its signed state which disables aborting the protocol. A state-less third party would
be more convenient, but we prove in Theorem 4 that this is not possible.

A message-optimal scheme has been proposed in [AsSW3 97]. It describes an asynchronous
scheme which requires four consecutive messages and time four. This is message-optimal in
the optimistic case since, as we will prove, there is no asynchronous optimistic contract signing
scheme with only three messages (Theorem 2).

Scheme 3 (Time-Optimal Asynchronous)
This scheme consists of the triple (A, B,V) and T of interactive probabilistic machines which are
able to execute the protocols defined as follows:

Contract Signing (Protocol “sign”; Figure 8): On input (sign, Cy, tid) the signatory, say A, sends
its signed contract in message mi4 := siga(C4). If A receives mip with an identical con-
tract, it sends mo4 := sigp(mi14,m1p). If a message mop from B is received, A sends m3y4 =
siga(maa, mop). After receiving mspg, the signatory outputs (signed, C, tid). If mgp is received
before mp since the messages have been reordered by the asynchronous network, both mg4
and mgy are sent. If mgp is received before mop, m34 is sent and (signed, C, tid) is output. If
a myp with a different contract is received before mop or if (wakeup, tid) occurs before mq4 has
been sent, “resolve;” is started by sending ma44 := siga(m14), if it occurs after mg4 has been
sent but before m34, “resolve;” is started by sending m/, 4 := siga(m24), else “resolvey” is
started by sending m} 4 :=siga (m34). Messages mop or m3p from a cheating player B contain-
ing different contracts Cy # Cp are ignored.
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if wakeup: i B wakeup:
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if ms: rejected. if ms: rejected.
if wakeup: m2a T wakeup:
“resolve,”. “resolvey”.
if wakeup: msa T wakeup:
“resolvey”. “resolvey”.
signed signed

Figure 8: Optimistic Behavior of the Time-Optimal Asynchronous Scheme 3.

Recovery from Exceptions (Sub-Protocol “resolve;”): This protocol is used in a situation where the
status of a contract may not be clear. If the signatory sends m44 to abort the protocol, the third
party either resends a previously sent decision ms, m§ or m{ or else an abort acknowledgment
ms := sigt(maa) and changes to the aborted-state for the aborting signatory. If the signatory
sends m}, the third party either resends a previous decision ms, mj, or mf or else signs an affi-
davit m}:=sigt(m}). After receiving ms, the signatory outputs (rejected, tid). After receiving
mg or myg, the signatory outputs (signed, C, tid).

Recovery from Exceptions (Sub-Protocol “resolvey”): This recovery sub-protocol is used to com-
plete the contract if it is clear that the signatories agreed on the contract text. One signatory,
say A, sends its message m/ 4 to the third party. The third party then either resends a previ-
ous decision mj or mg or else produces an affidavit and sends it as mg := sigt(m/ 4) to A who
outputs (signed, C, tid). This recovery by A overrides the effects of a previous abort message
myp sent by an incorrect player B.

Verification of a Contract (Protocol “show”): After the input (show, tid), a signatory, say A, looks up
(msa,msp), mi, or mf and sends it to the verifier V. The verifier verifies the messages. If these
checks fail, it outputs (rejected, tid) and else (signed, C, tid).

O

Lemma 3 (Security of Scheme 3)

Scheme 3 is an asynchronous fair contract signing scheme which is optimistic on agreement. <

Proof of Lemma 3: Scheme 3 adheres to Definition 2 by construction. We now show that it also

tulfills the requirements stated in Definitions 3 and 6.

Correct Execution: If both signatories A and B start with identical inputs (sign, Ca, tid) and
(sign, Cp, tid) and do not input wakeup then both will eventually receive all messages and
will output (signed, C, tid). If they disagree, both will abort by sending m4 and will finally
output (rejected, tid).

Unforgeability of Contracts: Assume that a correct verifier outputs (signed, C, tid). This means
that he received at least messages mj 4, m; p (maybe included in mj or m{) containing identical
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Figure 10: Third Party T of Scheme 3.

contracts which are signed by A and B, respectively. Thus, all correct parties have input (sign,
C, tid) since otherwise they would not have sent m; 4 and m, g at all.

Verifiability of Valid Contracts: A signatory, say A only outputs (signed, C, tid) after receiving
mgp or m§ or my containing identical contracts in messages m14 and m;p. Thus, it is able to
convince a verifier in all cases.

No Surprises with Invalid Contracts: Let us assume that (rejected, tid) was output by a correct
signatory, say A, after receiving ms and a correct verifier invoked by B outputs (signed, C, tid).
Then either (m34,m3sp), ms or mi must be known by B. Let us first assume that (ms4, m3p)
was shown to the verifier then A sent both m34 and my4 or m/ 4, i.e., A was incorrect. Let us
now assume that m§ was shown to the verifier then T sent both ms and mj, i.e., the third party
was incorrect. Let us finally assume that mf was shown to the verifier. Since ms as well as mg
were produced by the third party, the machine T was in one of the aborted states and thus A
must have sent either m44 or mJ,. Since A received ms, it did not send m} . Together this
implies that A sent m44. This contradicts the assumption that m{ was shown to the verifier a
correct A which sends ma44 does not send mgyy which is part of mf.
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Termination on Asynchronous Network: If the user inputs wakeup, a “resolve”-protocol is started.
In this protocol, the other signatory is not involved anymore. Since the third party is assumed
to be correct, it will answer. Thus, the “resolve”-protocol terminates with a definitive answer
after time 2, i.e., a fixed time after the input of wakeup.

Optimistic on Agreement: If two correct signatories do not input wakeup and input identical con-
tracts, they both receive the outputs (signed, C, tid) from the “sign”-protocol after time 3
without contacting the third party.

We now prove in Theorem 2 that asynchronous contract signing with only 3 messages is impos-
sible. Then we prove the optimality of Scheme 3 in Theorem 3. Since this scheme still needs a
state-keeping third party, we will show in Theorem 4 that one cannot do better, i.e., that recovery
with a state-less third party is not possible in the asynchronous case.

Theorem 2 (Message-Optimality of Scheme in [AsSW3 97])
There exists no asynchronous optimistic contract signing scheme with a “sign”—protocol with less
than four messages in case of agreement. <

In order to prove this theorem, we first show that recovery cannot involve both signatories in the
asynchronous case:

Lemma 4 (Asynchronous Recovery is 2-Party)
The outcome of the recovery phase on asynchronous networks is determined only by inputs from
the third party and the signatory starting it. <

Proof of Lemma 4: 1f the third party is invoked by a correct player, the recovery phase is required
to terminate in order to guarantee termination of the “sign”-protocol. However, if the third party
asked the other signatory, the third party cannot decide whether the message would eventually
be answered or not. Thus, if this signatory is not correct, “resolve” would not terminate. =

Proof of Theorem 2: Let us assume that A sends two messages, say m; and mg, in the optimistic
phase whereas B sends only one message, say my. Then (m1, mg, m3) must be sufficient to con-
vince the verifier. If A sends m; and m3 without having received ms, B can convince a verifier
without sending mg. Therefore, A is required to be able to recover to signed without contacting B
(Lemma 4) which contradicts the unforgeability requirement. Thus, m3 is sent after mo has been
received. If we now assume that B sends mg before receiving m, A could convince a verifier
without sending any message and B would be required to be able to recover to signed without
contacting A (Lemma 4) which again contradicts the unforgeability requirement.

Therefore, the messages are sent in the order m;, mg, ms (similar to Scheme 1 depicted in
Figure 1). Since the protocol is optimistic, at least (m1, m2) shown by A and (m1, mg, m3) shown
by B are sufficient to convince the verifier. Now consider the exceptions: Let us assume that T did
not decide for this tid before. If B now does not receive mj3, the third party has to decide locally
(Lemma 4) on signed since A may have obtained a valid contract (m1, mg). Thus B may obtain
a valid contract from the third party even if A only sent m;. Therefore, A must be able to start
recovery with the third party after sending m1, too. In this case, the third party is required to
decide locally whether the contract is valid or not given only m; from A. For unforgeability for
B, it has to decide on rejected based on m; only. If B now asks for recovery with m; and mg, T
has to decide locally. If it decides on signed since a dishonest A may have started recovery after
receiving valid contract (m, mg, m3), the “no surprises” requirement for a correct A would not be
fulfilled. If T decides on rejected, a correct player B may be surprised since A may have obtained
a valid contract. =
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This enables us to prove the optimality of Scheme 3:

Theorem 3 (Optimality of Scheme 3)
There exists no asynchronous optimistic contract signing scheme with a “sign”—protocol in less
than time 3 in case of agreement and a protocol in time 3 needs at least 6 messages. <

Proof of Theorem 3: If we assume that a 2-time 4-message optimistic “sign”-protocol exists, then
this can be used to construct a 3-time 3-message protocol: Since the two-party signing protocol has
4 messages labeled with two subsequent times, two messages (m14,m1 ) are labeled with time 1
and two messages (mao4, mop) are labeled with time 2 where each two messages labeled with the
same time are independent from each other. Therefore, one player, say B, can send m; g together
with myp and mg4 can be sent after receiving these two messages. The result is a three-message
protocol with the messages m/ 4 :=m14, mb g := (m1p, map), and mf 4 :=m9o4 which does not exist
according to Theorem 2.

If we assume that a 5-message protocol in time 3 exists, we can construct an equivalent protocol
with 3-messages in time 3 by shoving a message up or down (see Figure 11): If 5 messages are sent
in time 3, there exists a time ¢ for which only one message m 4 sent by one signatory, say A, exists.
Furthermore, two messages m/y and mp are labeled with time ¢’ which is either ¢ + 1 or ¢ — 1. If
two messages are labeled with time ¢ + 1 then the messages m4 and m/; can be sent together at
time ¢. This is possible since A does not receive a message at time ¢ which guarantees that the
contents of m/y have already been fixed when m4 was sent. For B, receiving m/, earlier must
not make a difference since the network may have reordered the messages anyhow. If, on the
other hand, two messages m/, and mp are labeled with time ¢ — 1 then the messages m/y and m 4
can be sent together at time ¢. This is possible since B does not send a message at time ¢ which
implies that m/, is not needed by B to compute a message. This construction enables to change
two subsequent times with two and one messages into two subsequent times with one message
each. Two applications of this construction result in the desired 3-message protocol in time 3
which contradicts Theorem 2. =

Finally, we show that the state-keeping third party in Scheme 3 cannot be avoided:

Theorem 4 (Asynchronous T Keeps State)
There is no asynchronous contract signing scheme with state-less third party which is optimistic
on agreement. <

Proof of Theorem 4: Assume there is an asynchronous optimistic contract signing scheme. Then
by means of the construction in the proof of Theorem 3, there is an equivalent “sign”-protocol
which has only messages, say my, ..., my, in a row where A sends m; and m,, (if not, prepending
an empty message helps). Furthermore, we assume that in “resolve”, the third party gets all
messages the invoker has sent or received so far, i.e., a prefix (m1,...,mg) of (my,...,my). Since
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Figure 12: Behavior of the Optimal Asynchronous Scheme 4 with In-Line Third Party.

we are in an asynchronous model, the third party’s decision cannot depend on the non-invoking
signatory (Lemma 4). Since the third party is assumed to be state-less, the decision is actually
a set of functions T'P() on (my, ..., my) to {signed,rejected} for each k for which a request is
allowed.

Consider a run with correct A and B where both input identical contracts and B inputs wakeup
before the last message m,, from A has been received. Since A may have received a valid contract,
the third party must decide TP(m,...,my) := signed for k = n — 1 to fulfill the “No Surprises”-
requirement.

Now assume that TP(my,...,m;) = signed for some k > 2. If we now consider the case
that the other player gets a wakeup after sending my_1, a recovery request must be allowed since
the other player will eventually receive mj_; which would enable it to recover to signed. For
consistency reasons, we have T'P(my,...,mg_1) := TP(my,...,my)=signed. Thus, inductively
we get TP(m;) = signed which contradicts the unforgeability requirement. m

6 An Optimal Asynchronous Non-Optimistic Scheme

All protocols up to now were optimistic, i.e., the third party was only invoked in case of failures.
We now prove the message and time optimality of an asynchronous version of a well-known
synchronous fair exchange protocol based on a third party storing and forwarding the contract
signatures.

This protocol needs four messages in time 2 and works on asynchronous networks. Its behav-
ior is depicted in Figure 12. The machines for the individual players are depicted in Figures 13
and 14.

Scheme 4 (Time-Optimal Non-Optimistic Protocol)
This scheme consists of the triple (A, B,V) and T of interactive probabilistic machines which are
able to execute the protocols defined as follows:
Contract Signing (Protocol “sign”; Figure 12): Oninput (sign, C, tid), each signatory, say A, sends
a signed message m 4 :=siga (C4) containing the contract text C4 to the third party. If an input
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(wakeup, tid) is made, a message mg :=siga (wakeup) is sent. The third party waits for m; 4 and
mip and verifies whether Cy = Cp and tid 4 = tidp. If this is the case, the third party sends
the message my = sig(m1.4,m1B) to both signatories. If the checks fail or wakeup is received
before both messages have been received, the third party sends m), := sigy(rejected).

Verification of a Contract (Protocol “show”): On input (show, tid), signatory A looks up mo and
sends it to the verifier. The verifier checks whether the message is valid and outputs (signed,
C, tid) if this succeeds and (rejected, tid) else.

O

We now prove the security of this scheme:

Lemma 5 (Security of Scheme 4)

Scheme 4 is an asynchronous fair contract signing scheme if the machine T is correct. <

Proof of Lemma 5: The scheme adheres to Definition 2 by construction. We now show that each of
the requirements described in Definition 3 are fulfilled:

Correct Execution: If both correct players A and B input (sign, C, tid) with identical tid and C
and do not input wakeup, then both receive a valid contract mg. If the contracts or tid’s differ,
A and B output (rejected, tid) after receiving m.

Unforgeability of Contracts: In order to convince a correct verifier V for a given tid, one needs
mg = sigt(m14, m1 p) including this tid. A correct signatory, say A, will not send m1 4 without
the input (sign, C, tid).

Verifiability of Valid Contracts: 1f A outputs (signed, C, tid) then it received my which will be
accepted by the verifier as a correct contract.
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No Surprises with Invalid Contracts: Let us assume that a correct signatory A returned rejected
on input (sign, C, tid) whereas B is able to convince the verifier. Then B received my whereas
A received mb. This implies that T sent mg and m/, with the same tid which contradicts the
assumption that the T is correct.

Termination on Asynchronous Network: 1f the user has input (wakeup, tid), the scheme requires at
most time 2 to output signed or rejected.

]
We now prove the optimality of Scheme 4 in the case where the participants agree.

Theorem 5 (Optimality of Scheme 4)
There exists no asynchronous non-optimistic contract signing scheme with a “sign”—protocol with
less than four messages or less than two rounds in case of agreement. <

Note that this theorem also proves that the message complexity (in the fault-less case) of the
scheme in [AsSW3 97] cannot be improved upon by allowing the third party to participate in
the “sign”-protocol in case of agreement.

Proof of Theorem 5: 1f we assume that a three-message protocol with third party exists, then the
following prerequisites hold: If the third party sends messages without having received any mes-
sage before, these messages are independent of the contract to be signed and can be omitted. If
the third party does not send and receive any messages, the protocol is optimistic, and a three-
message optimistic protocol where the third party does not participate in the verification does not
exist (Theorem 2). If the third party only receives messages, these messages do not change the out-
puts of the signatories or the result of a subsequent verification because T does not participate in
“show” and can be omitted. Therefore, the third party first receives some messages and then sends
some. Any protocol where one of the signatories sends no messages contradicts the unforgeabil-
ity requirement since the outcome will be independent of the contract input by this participant.
If, on the other hand, a signatory does not receive any messages, the output of this signatory is
independent of the contract input by the other signatory which contradicts our requirements, too.

Thus each of the three players send and receive one message each, and there are only three
messages. Therefore, these messages are sent in a circle where T does not send the initial message
and does not receive the last message, i.e., (A, B, T, A) or (A, T, B, A). In both cases, B must output
signed after receiving its only message. By the verifiability requirement, B will then also produce
an output signed at the verifier by showing this message. Moreover A may start recovery before
anyone got a message from B, thus after A received a wakeup, A and T must be able to decide
and recover locally (similar to Lemma 4). If this recovery leads to an output signed to A, it will
contradict the unforgeability requirement for B, because T makes this decision without any input
from B. If they recover to rejected, it contradicts the “No Surprises”- requirement for A because
B has already received a valid contract.

To prove that no protocol in time 1 exists, we assume there were such a protocol. In this
protocol, the messages from the third party cannot depend on the contract, whereas the messages
to the third party will not change the outcome of a subsequent verification since we do not allow
3-party verification. Therefore, these messages can be omitted. The resulting protocol would be a
two-message protocol, and we have already shown that those do not exist. m
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Figure 15: Optimistic Behavior of the Message-Optimal Synchronous Scheme 5 based on Signature
Revocation.

7 An Optimal Synchronous Scheme with Three-Party Verification

We will now give a precise description of the synchronous contract signing scheme sketched
in [Even 83] and prove its correctness and its optimality. The scheme requires two messages in
only one round. The underlying idea is that both send their contract and “no answer” means
agreement. The optimistic behavior is depicted in Figure 15. The behavior of the signatories is
depicted in Figure 16. The third party is depicted in Figure 17.

Scheme 5 (Scheme from [Even 83])
This scheme consists of the triple (A, B, V) and a third party T of interactive probabilistic machines
which are able to execute the protocols defined as follows:
Contract Signing (Protocol “sign”; Figure 15): Oninput (sign, C4, tid), each signatory, say A, sends
its contract m1 4:=siga (C4) to the other signatory in the first round. If a signatory receives m1 g
with the same contract from the peer, it outputs (signed, C, tid). Else, it starts “resolve”.

Recovery from Exceptions (Sub-Protocol “resolve”): One signatory, say player A, starts “resolve”
in Round 2: A sends a message mg4 := siga(m14) to the third party.

If the third party receives messages mos and map from both players in Round 2 it forwards
them as mg3 = sigy(m14,m1p) or mf = sigy(revoke) to both players depending on whether
the contained contracts were identical or not. Both players then output (signed, C, tid) if they
received mg3 and (rejected, tid) if they received mj.

If the third party receives only one recovery request, say message ma4 from A, this message
contains A’s alleged part m/ , of the contract. The third party forwards this message in Round 3
as map := sigy(mga) to B. Player B then resends the contract it has received in message
map = sigg(mia, mip) to T who forwards it in ms = sigy(mi4,m1p) to A who will output
(signed, C, tid). If a dishonest B does not answer, T revokes A’s signature contained in m; 4 by
sending a revocation message mj := sigt(revoke) to A who will output (rejected, tid).

Note that message m 4 contained in m4p may be different from the message m/ 4 contained in
meoa. In this case, an incorrect A sent a wrong recovery request moy4 and the contained m/ 4 is
just ignored.

Verification of a Contract (Protocol “show”): Oninput (show, tid), a signatory, say A, looks up (m 4,
m1p) and sends it to the verifier. The verifier forwards the contract to T. If T does not resend
a revocation message mj or mj in the next round, the verifier outputs (signed, C, tid) and
(rejected, tid) else.
O
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Figure 17: Third Party T of Scheme 5.

Note that if both signatories as well as the third party participate in the verification (i.e., an
even weaker model), one may make this scheme optimistic: The non-showing party may show a
different signed message if the showing party cheats.

Lemma 6 (Security of Scheme 5)
Scheme 5 is a synchronous fair contract signing scheme with three-party verification which is
optimistic on agreement. <

Proof of Lemma 6: The scheme adheres to the modified Definition 4 by construction. We now show
that each of the requirements described in Definitions 3 and 6 are fulfilled:

Correct Execution: If both correct players A and B input (sign, C, tid) with identical tid and C,
then both receive a valid contract and output (signed, C, tid). If both input different contracts,
both will start resolve after Round 1 and the third party will send mj to both signatories who
will then output (rejected, tid).

Unforgeability of Contracts: In order to convince a correct verifier V for a given tid, one needs
(m14,m1B). A correct signatory, say A, will not send m; without the input (sign, C, tid).

Verifiability of Valid Contracts: If a correct player A outputs (signed, C, tid) then it has received
m1p and produced m; 4 or else received m3 or ms containing (m1 4, mip) with identical con-
tract texts. This will be accepted by the verifier if this tid was not revoked. Now assume that a
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correct T sent a revocation token mj4 or mj, for this tid. If the token is mf (both parties started
recovery), either T was incorrect since it sent m4 and ms or ms or else A was incorrect since it
started resolve after a output signed. If the token was m{ (one party started recovery), either
A or B did not answer. If a correct player A output signed, it would answer. If B did not
answer, A would not have output signed.

No Surprises with Invalid Contracts: If an correct signatory A output rejected on input (sign, C,
tid), it has received mj or mj which will be resent by the third party to the verifier during the
verification protocol. Therefore, the verifier will decide on rejected, too.

Termination on Synchronous Network: The scheme requires at most 5 rounds (1 in “sign” and 4 in
“resolve”) to terminate.

Optimistic on Agreement: If two correct signatories input (sign, C, tid), the protocol outputs
(signed, C, tid) to both participants after round 1 without contacting the third party.

Theorem 6 (Optimality of Scheme 5)

In the synchronous model with state-keeping third party, there exists no contract signing scheme
with three-party verification and a “sign”—protocol with less than two messages in case of agree-
ment. &

Proof of Theorem 6: 1f an optimistic 1-message protocol exists, one party does not send any message.
Therefore, the third party and the sender of the single message are able to convince a verifier which
contradicts the unforgeability requirement for the recipient of this single message. m

8 A Optimal Asynchronous Scheme with Three-Party Verification

We now describe an asynchronous version of the optimistic Scheme 1. This scheme can only be
made asynchronous by allowing three-party verifications. The individual machines of the players
are depicted in Figures 19, 21, and 20.

Scheme 6 (Message-Optimal Synchronous)
This scheme consists of the triple (A, B,V) and T of interactive probabilistic machines which are
able to execute the protocols defined as follows:

Contract Signing (Protocol “sign”; Figure 18): On input (sign, C4, tid), the signatory A initiates
the protocol by sending the signed message m; :=sigs (C4) with contract C4 to the responding
signatory B. B receives the input (sign, Cp, tid) and message m; and verifies whether the
received contract text C'4 is identical to the input contract text Cg. If not or if wakeup is input
before m; is received, the players disagree about the contract and B returns (rejected, tid).
Else, it signs the received message and sends it as mq :=sigg(m1) to A. If it received mo, A then
signs the received message again, sends it as m3 :=siga (m2) back and outputs (signed, C, tid).
On receipt of message m3, B outputs (signed, C, tid) as well. After a successful execution of
this optimistic protocol, A and B store m3 under the tid for later use in a verification protocol.

If A gets an input wakeup before receiving message mo, it starts “resolve;” to abort the proto-
col. If B did not receive message mg3, it may be that A nevertheless was able to compute a valid
contract mg3 after receiving msy. Therefore B starts the “resolve,”-protocol to invoke the third
party to guarantee fairness.
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Signatory A Signatory B

not ok or wakeup:
rejected

not ok or wakeup:
“resolve;”
else signed.

not ok or wakeup:
“resolvesy”
else signed.

Figure 18: Optimistic Behavior of the Message-Optimal Synchronous Scheme 6.

Recovery from Exceptions (Sub-Protocol “resolve,”): To start this recovery protocol, A sends the
message my 4 = siga(abort) to T. If the third party made a decision before, it resends the de-
cision. If the third party is in its start-state, it changes to the aborted state and acknowledges
this to A by sending ms := sigt(aborted). If A receives ms, it outputs (rejected, tid). If A
receives mg, it outputs (signed, C, tid).

Recovery from Exceptions (Sub-Protocol “resolvey”): First, B sends my4p:=sigg(msg) containing m,
and mg to the third party T. If the protocol was aborted, the third party resends ms. Else, it
sends an affidavit mj := sigt(m2) to B and changes to the signed-state. If B receives my, it
outputs (signed, C, tid). If it receives ms, it outputs (rejected, tid).

Verification of a Contract (Protocol “show”): On input (show, tid), signatory A looks up mo and
sends it as m 4 := siga(m2) to the verifier. The verifier then forwards this message to the third

party. If the third party resends an abort message ms, the verifier outputs rejected. If the
third party answers with mj, it outputs signed.

Signatory B on the other hand either looks up mj or m3 signs it and and sends it to the verifier.
If the verifier receives a correct message, it outputs signed and rejected, else.
Od

Note that m3 is a valid contract for B in any case whereas it need not be a valid contract for A if it
aborted the protocol.

Lemma 7 (Security of Scheme 6)
Scheme 6 is a asynchronous fair contract signing scheme with three-party verification which is
optimistic on agreement. <

Proof of Lemma 7: The scheme adheres to Definition 4 by construction. We now show that each of
the requirements described in Definitions 3 and 6 are fulfilled:

Correct Execution: If both correct players A and B input (sign, C, tid) with identical tid and C,
then both receive a valid contract m3 and output (signed, C, tid). If the contracts or tid’s differ
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Figure 21: Third Party T of Scheme 6.

and a signatory, say A, inputs wakeup, this player will start resolve by sending m44 and will
output (rejected, tid) after receiving ms.

Unforgeability of Contracts: In order to convince a correct verifier V for a given tid, one needs
correct messages mg or mj for this tid. Since mg as well as mj contain signatures from both
participants, a correct signatory input (sign, C, tid).

Veriﬁ'ability of Valid Contracts: 1f a correct signatory A outputs (signed, C, tid) then it received my
or mf from which it can extract mo which is a valid contract if the third party does not resend
ms. If mj has been received and the third party resends ms, the third party is incorrect. If mo
has been received and a correct third party resends ms, A is incorrect since it sent m44 while
receiving mo. If B output (signed, C, tid), it received mg or my which will be accepted by the
verifier in any case.

No Surprises with Invalid Contracts: Let us first assume that a correct signatory A returned rejected
on input (sign, C, tid) whereas B is able to convince the verifier. This requires that B knows
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mg or mj, for the given tid and C'. Since A returned rejected, it executed “resolve;” receiving
ms. Thus, B did not receive mf from the correct T. If B received m3, A was incorrect since it
sent m3 while executing “resolve;”.

If B returned rejected whereas A is able to convince a verifier, A knows m 4 which contains
mg. Therefore, B output rejected after receiving ms during “resolve,” and this decision will
be resent during recovery and a correct verifier will decide on rejected.

Termination on Asynchronous Network: The scheme requires at most time 2 after an input wakeup.

Optimistic on Agreement on Asynchronous Network: 1f two correct signatories input (sign, C, tid)
and both agree, signatory A outputs (signed, C, tid) after time 2 and player B after time 3.

Theorem 7 (Optimality of Scheme 6)

There exists no asynchronous optimistic contract signing scheme with three-party verification
with a “sign”—protocol with less than three messages in case of agreement and every three-
message protocol requires at least time 3. <

Proof of Theorem 7: 1f we assume that there would be a two-message asynchronous optimistic
“sign”—protocol, unforgeability requires that each signatory sends one of these messages. Fur-
thermore, each of these messages must be a valid contract if the signatures for the given tid have
not been revoked. Optimism requires that if this single message is received correctly and the
signatories agree, this signatory outputs signed.

Let us assume that one signatory receives wakeup after sending its message but before receiving
the message from the peer. If this is the first request to T for this ¢id, this signatory is required to
recover with the third party to rejected in order to guarantee unforgeability. But this contradicts
the no-surprises requirement since the other signatory already output signed.

Let us assume that there would be an optimistic “sign”—protocol with three messages in two
rounds. Then this can be used to construct a two-message protocol by shoving messages like in
the proof of Theorem 3 but such a two-message protocol does not exist. m

9 Conclusion

We described new and existing protocols for fair contract signing on synchronous and asyn-
chronous networks. We have proven tight bounds for different network and contract signing
models.

One conclusion is that in practice, optimistic protocols should be better for most applications
since a high percentage of faulty protocol executions seems unlikely. Optimistic protocols have
practical advantages such as a higher availability and more privacy against the third party, which
requires additional effort (see, e.g., [FrRe 97]) for in-line protocols.
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