
Privacy-Enhanced Event Scheduling
Benjamin Kellermann and Rainer Böhme

Faculty of Computer Science, Technische Universität Dresden, 01062 Dresden, Germany
Email: {Benjamin.Kellermann|Rainer.Boehme}@tu-dresden.de

©IEEE, (2009). This is the author’s version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribu-
tion. The definitive version was published in CSE/PASSAT 2009, pp 52–59, 2009, (IEEE Computer Society).

Abstract—Event schedulers, well-known from groupware and
social software, typically share the problem that they disclose
detailed availability patterns of their users. This paper distin-
guishes event scheduling from electronic voting and proposes a
privacy-enhanced event scheduling scheme. Based on superposed
sending and Diffie–Hellman key agreement, it is designed to be
efficient enough for practical implementations while requiring
minimal trust in a central entity. Protocols to enable dynamic
joining and leaving of participants are given.

Keywords-event scheduling; electronic voting; superposed send-
ing; anonymity; privacy-enhanced application design

I. INTRODUCTION

So-called ‘Web 2.0’ [1] applications became popular over
the past years. Not only wikis, forums and social networking
sites boomed massively, also some special purpose Web 2.0
applications like twitter or flickr got much attention.

One of these applications is doodle [2]. It lets users create
polls to “schedule an event such as a board meeting, business
lunch, conference call, family reunion, movie night or any
other group event” [2]. As in most Web 2.0 applications,
privacy is only a secondary goal. To keep doodle as simple
as possible, everybody may create polls, cast votes to existing
polls, see results of other polls, and even revise casted votes
of running polls. When participating in a doodle poll, one
has to share personal information with the server, the other
participants, and even with the whole world. This information
includes when exactly a particular user is available for the
event. The so-called availability patterns often contain sensitive
information in at least two respects. First, direct inference from
the availability at a particular date may reveal information about
one’s private life (‘Will my husband vote for the date of our
wedding anniversary?’). Second, indirect inference arises from
the fact that availability patterns contain much entropy and thus
allow to (re-)identify individuals who would otherwise remain
pseudonymous (‘The availability pattern of user bunny23 looks
suspiciously like the one of my employee John Doe!’).

Recently even the doodle developers have recognized that
users demand some privacy. The current versions of their
application includes the possibility to create “hidden polls” in
which only the administrator can see all votes. However, one
still has to trust the administrator and the doodle service.

This paper proposes a privacy-friendly solution for schedul-
ing a single event. We define the problem and distinguish it
from electronic voting in Section II. An overview of related
work can be found in Section III. We present the basic scheme
in Section IV and show extensions with regard to simplifying

the key exchange and considering dynamic joining and leaving
in Section V. Section VI explains why the proposed scheme
is secure and efficient enough to be suitable for practical
implementations.

II. PROBLEM DEFINITION AND NOTATION

A. Single Event Scheduling Problem

Privacy-enhanced event scheduling can be understood
as distributed constraint satisfaction/optimization problem
(DCSP/DCOP) or as an instance of an electronic voting scheme.
As privacy is merely a secondary aspect in DCOP (and many
schemes in fact leak information [3], [4] or are not verifiable
[5]; despite high complexity), we frame our contribution in the
context of e-voting, where exact security analyzes with regard
to voter anonymity have a longer tradition.

The view that existing e-voting schemes can be directly
applied to the special case of event scheduling is not fully
correct, either: the main difference between existing schemes
and the event scheduling problem is the parameter in which
the system has to scale efficiently. Typical governmental or
committee voting schemes in the literature scale in the number
of voters, each of whom has one (or a few) vote(s). By contrast,
event scheduling requires a limited number of voters to make
many binary choices, one for every possible point in time.
Hence it has to scale in the number of independent choices.
As opposed to typical governmental election schemes, which
have to cope with millions of voters, it is not so crucial for
event scheduling to scale gently in the number of participants.
Typically we schedule events for closed groups of a few dozens.

For example it may be desirable to agree on a 1 hour meeting
within the next two weeks. As a typical working-week has
40 hours, assuming that meetings are aligned to full hours,
we would end up with 40 votes per week. Assuming possible
start dates at every quarter of the hour, we would end up with
40·4 = 160 starting times per week. This totals to 320 different
starting times which all require a binary vote. Figure 1 on the
following page illustrates the difference between governmental
elections in the literature and our special case.

Current implementations like doodle certainly run into
usability problems when offering polls with 320 options.
But it is easy to conceive interfaces to personal electronic
calendars, similar to common office groupware. Obviously,
such a system designed as transparent as current tools, i. e.,
without considering privacy, would end up in publishing large
and detailed availability patterns of its users. So protecting

mailto:Benjamin.Kellermann@tu-dresden.de
mailto:Rainer.Boehme@tu-dresden.de


Vote
Candidate #1
Candidate #2 8

...
Candidate #10

D
at

e
#1

D
at

e
#2

. . . D
at

e
#3

20

Yes 8 8

No 8

Figure 1. Two example voting sheets: left for a governmental election; right
for event scheduling. In both sheets, each voter has one choice per column.

this personal data can be formulated as main motivation and
requirement for our scheme.

B. Requirements

Requirements for e-voting were already discussed in the
literature [6]–[9] and obviously there are legal requirements for
governmental e-voting [10, e. g.]. Event scheduling is subject to
fewer legal restrictions. However, as the problem is very similar
to e-voting, one may take these requirements as a starting point.

It is often required that governmental elections are general,
free, equal, and secret [11]. Especially for e-voting, two
partially conflicting requirements emerge: verifiability and
receipt-freeness. The latter is desirable to discourage vote-
selling. Transparency is another requirement of elections. It
means that everybody should understand what happens and
how his or her vote has been counted. This is particularly valid
when cryptography comes into play.

Derived from typical requirements in e-voting, the following
requirements apply to privacy-enhanced event scheduling:

1) Verifiability: Every voter should be able to verify that
no other voter has cheated and that his vote has been counted.

2) Privacy: Nobody should learn more than absolutely
necessary about the availability of other voters and thus should
not be able to infer on their identity, i. e., every participant
should only learn that the other participants are available at
the one specific date which was chosen.

3) Untrusted server: As little trust as possible should be
placed in any central entity (e. g., vote server).

4) Usability: The scheme should not require many more
steps than existing event schedulers, i. e., it should not require
much more user interaction and message exchanges.

5) Efficiency: The scheme should be more efficient than
existing e-voting or DCOP schemes. More precisely, it should
be efficient for large scheduling problems with many possible
event dates.

C. Notation

We will use the following terminology and notation in this
paper.

1) Initiator: A person who sets up a poll. This person may
also participate in the poll as a voter.

2) Voter (𝑝): A participant in the poll. 𝑃 is the ordered set
of all voters so that |𝑃 | is the number of voters in the poll.1

1We used the term ‘voter’ here instead of ‘participant’ to be more conform
to the existing literature on e-voting.

3) Time slot (𝑡): A specific date and time at which an event
can take place. The ordered set of time slots is denoted by 𝑇 .

4) Anonymity set: A set of voters, in which a specific voter
is not identifiable [12].

III. RELATED WORK

Literature on electronic voting is abundant. For our purpose,
only pure e-voting schemes are relevant [13]–[26], which have
to be distinguished from paper-based elections with computer-
assisted counting [27]–[31]. We can broadly classify the
literature into three approaches to meet the basic requirements:
mixes, homomorphic encryption, and blind signatures. We will
discuss each of them briefly.

A. Mixes

Chaum invented mixes as building blocks for anonymous
communication channels and he first proposed an election
scheme based on them [13]. Many extensions have followed
thereafter [17], [19]–[21]. The common idea is to build an
anonymous blackboard with mixes. In a first phase, every
voter has to generate an asymmetric key pair and publish the
public key on that blackboard. In the voting phase, every voter
encrypts his or her vote with the secret key and publishes the
encrypted vote on the anonymous blackboard. Everybody can
decrypt the votes and count the result.

Assuming ℓ mixes, to cast a vote, every voter has to encrypt
his or her key and vote ℓ times asymmetrically. A naive
adaption to event scheduling would imply one poll per time
slot. Every voter would have to do 2 · ℓ · |𝑇 | asymmetric
encryptions. Further, one must trust that the mixes do not
collude to compromise one’s privacy, and the mixes have to
perform additional decryption operations, which add to the
overall complexity.

B. Homomorphic Encryption

Voting schemes based on a homomorphic encryption function
use the property that one can add all the votes and decrypt the
result without decrypting individual votes (i. e., one can find
two operations ⊕ and ⊗ so that the encryption function E is
homomorph to these operations E(𝑥1)⊕E(𝑥2) = E(𝑥1⊗𝑥2)).
A problem of plain homomorphic encryption is that cheating
voters stay undetected as their votes are not decrypted separately.
So practical schemes require extra effort to prevent this.

A voting scheme based on a homomorphic encryption
function was first described by Cohen and Fischer [14] and
later extended by Benaloh and Yung [15]. The scheme consists
of different parts where a central entity and the voters have to
commit to values and prove their correctness without revealing
them. Proving a “primary” ballot is done by committing to
several “auxiliary” ones, decrypting half of them and showing
that the others are type-equivalent to the primary ballot. This
proof is done twice in the whole scheme.

A direct application of this method for event scheduling
appears to be inefficient: considering only the vote encryptions,
with a security parameter ℓ, every voter would have to do ℓ · |𝑇 |
asymmetric cryptographic operations.



𝑘𝑝𝑖
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝑝𝑖,𝑝1,𝑡1 , sig𝑝1
(𝑘𝑝𝑖,𝑝1,𝑡1) . . . 𝑘𝑝𝑖,𝑝1,𝑡|𝑇 | , sig𝑝1

(𝑘𝑝𝑖,𝑝1,𝑡|𝑇 |)
...

. . .
...

𝑘𝑝𝑖,𝑝𝑖−1,𝑡1 , sig𝑝𝑖−1
(𝑘𝑝𝑖,𝑝𝑖−1,𝑡1) . . . 𝑘𝑝𝑖,𝑝𝑖−1,𝑡|𝑇 | , sig𝑝𝑖−1

(𝑘𝑝𝑖,𝑝𝑖−1,𝑡|𝑇 |)

𝑘𝑝𝑖,𝑝𝑖+1,𝑡1 , sig𝑝𝑖+1
(𝑘𝑝𝑖,𝑝𝑖+1,𝑡1) . . . 𝑘𝑝𝑖,𝑝𝑖+1,𝑡|𝑇 | , sig𝑝𝑖+1

(𝑘𝑝𝑖,𝑝𝑖+1,𝑡|𝑇 |)
...

. . .
...

𝑘𝑝𝑖,𝑝|𝑃 |,𝑡1 , sig𝑝|𝑃 |
(𝑘𝑝𝑖,𝑝|𝑃 |,𝑡1) . . . 𝑘𝑝𝑖,𝑝|𝑃 |,𝑡|𝑇 | , sig𝑝|𝑃 |

(𝑘𝑝𝑖,𝑝|𝑃 |,𝑡|𝑇 |)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

Inspired by Benaloh, Sako and Kilian introduced a voting
scheme that uses partially compatible homomorphisms [18].
Baudron et al. enhanced this scheme for multi-votes [22].
However, also in this scheme, a voter has to encrypt every
single vote multiple times. Baudron’s extension even targets
multi-candidate elections, but this is not equivalent to the event
scheduling problem, where repeated elections would be needed.

C. Blind Signatures

Shortly after his mix-approach, Chaum came up with another
voting scheme [26] which uses blind signatures [32]. Fujioka
et al. reduced the complexity of Chaums idea to adapt it to
large scale elections [16] and many subsequent schemes were
derived from the Fujioka–Okamoto–Ohta scheme [23]–[25].
Some of them led to implementations [33], [34].

The main idea is to split the protocol into two independent
phases: (1) administration, which handles access control, and
(2) counting of anonymously casted votes. The vote is blindly
signed during administration, unblinded by the voter and then
sent anonymously to the counter. As the casted votes contain
no personal information, they can be published afterwards.

If one applies this scheme to the event scheduling problem,
a voter would have to blind and unblind |𝑇 | messages and
verify the administrator’s signature of every message. The
administrator would have to verify |𝑃 | signatures and has to
sign |𝑇 | messages. The counter would have to verify |𝑃 | · |𝑇 |
signatures. The overall effort is (|𝑃 |+2) · |𝑇 |+ |𝑃 | asymmetric
cryptographic operations.

D. Specific Prior Work

We are aware about only one specific publication on
secure and verifiable event scheduling [35], which in fact
covers three different approaches to the problem. One is a
solution based on a trusted third party, which is efficient,
but stands in contrast to our requirement of limited trust
in a central entity. The second is a straight application of
general secure distributed computing. Consequently, it suffers
from high computational and communication complexity. The
third approach, a “custom-made negotiation protocol” is most
interesting and promising. It can be best described as a hybrid
between the techniques reviewed in Sects. III-A to III-C above.
The protocol is designed to schedule single events through a
combination of homomorphic encryption with respect to the
equality operation (in fact, addition modulo two) to blind
individual availability pattern, and an anonymous channel,
which is established by letting voters act as re-encrypting mixes.

While the cryptographic operations are comparably efficient,
the scheme requires way more communication phases than our
proposal. (The authors acknowledge this and discuss ways to
trade off communication complexity against trust assumptions.)
Moreover, dynamic joining and leaving of participants is not
considered.

IV. BASIC SCHEME

Our proposed scheme consists of three mandatory phases and
one optional verification phase that is run when inconsistencies
occur:

1) poll initialization,
2) casting of the votes,
3) publication of the result,
4) (optional) verification of the result.

In the following we describe the phases in more detail.

A. Poll Initialization

In the poll initialization phase, the initiator has to define the
set 𝑇 of all possible time slots at which the event can take
place. For now we consider a closed group, so the initiator has
to define the set of voters 𝑃 . Dynamic inclusion and exclusion
of voters will be discussed in Sects. V-C and V-D.

To ensure the anonymity of each voter, we propose to
use superposed sending, generalized to other abelian groups
than GF(2) [36]. This anonymity scheme has an implied
homomorphism, in which we can integrate the voting protocol.
Let 𝑛 be the modulus that defines the group Z𝑛 for superposed
sending. To ensure that no overflow occurs while summing up
all votes, the modulus 𝑛 has to be large enough, i. e., 𝑛 > |𝑃 |.

All voters have to exchange symmetric keys beforehand. To
be precise, each voter has to do a key exchange with |𝑃 | − 1
other voters. Therefore he exchanges with each other voter,
|𝑇 | independent and uniformly distributed random numbers
𝑟𝑡 ∈ Z𝑛. This means he ends up with (|𝑃 | − 1) · |𝑇 | random
numbers. To detect cheating by key modification later on,
the participants have to sign their keys. A digital signature
by participant 𝑝 of message 𝑚 will be denoted as sig𝑝(𝑚).
Keys shared by a pair of voters are denoted as 𝑘𝑝𝑖,𝑝𝑗 ,𝑡 where
𝑝𝑖, 𝑝𝑗 ∈ 𝑃 and 𝑡 ∈ 𝑇 . To run the key exchange, each pair of
voters 𝑝𝑖, 𝑝𝑗 where 𝑖 < 𝑗 does:

1) Exchange a random number 𝑟𝑡 ∈ Z𝑛 for every 𝑡 ∈ 𝑇 .
2) Voter 𝑝𝑖 stores the signatures sig𝑝𝑗

(𝑘𝑝𝑖,𝑝𝑗 ,𝑡) and the keys
𝑘𝑝𝑖,𝑝𝑗 ,𝑡 = 𝑟𝑡.

3) Voter 𝑝𝑗 stores the signatures sig𝑝𝑖
(𝑘𝑝𝑗 ,𝑝𝑖,𝑡) and the keys

𝑘𝑝𝑗 ,𝑝𝑖,𝑡 = −𝑟𝑡 mod 𝑛.



Afterwards each voter 𝑝𝑖 holds a key matrix as displayed
in Equation 1 on the previous page. Rows in this matrix
contain the keys and signatures exchanged between two voters
𝑝𝑖, 𝑝𝑗 and are denoted by �⃗�𝑝𝑖,𝑝𝑗 . Establishing the whole key
graph requires |𝑃 |·(|𝑃 |−1)

2 key exchanges. Since such a key
exchange protocol does not scale well in |𝑃 |, we will discuss a
reduction of communication complexity by using asymmetric
cryptography in Section V-A.

B. Casting of Votes

In this phase, each voter has to state for every given time
slot whether he or she can participate in the event or not.
The superposed sending, as underlying anonymity mechanism,
sums up all messages. This suits well with our goal, as we are
only interested in the sum of the given votes.

Each voter 𝑝 has to calculate an encrypted vote vector 𝑑𝑝
which consists of |𝑇 | encrypted votes 𝑑𝑝,𝑡 ,

𝑑𝑝 = (𝑑𝑝,𝑡1 , 𝑑𝑝,𝑡2 , . . . , 𝑑𝑝,𝑡|𝑇 |) . (2)

An encrypted vote 𝑑𝑝,𝑡 is calculated by adding all keys the
voter has exchanged with other voters to the actual vote 𝑣𝑝,𝑡
modulo 𝑛,

𝑑𝑝,𝑡 = 𝑣𝑝,𝑡 +

|𝑃 |∑︁
𝑖=1,𝑝𝑖 ̸=𝑝

𝑘𝑝,𝑝𝑖,𝑡 mod 𝑛 . (3)

𝑣𝑝,𝑡 ∈ {0, 1} is the specific vote with the semantic that value
0 means the voter 𝑝 is unavailable at time slot 𝑡 and value 1
signals availability.

Vector 𝑑𝑝 is sent to the server and will be published there
after all voters have casted their votes.

C. Result Publication

When all vote vectors are published on a central server,
any party can calculate the sum of these vectors. Since all
keys should be pairwise inverse, the result should be a vector
�⃗� ∈ (Z|𝑃 |)

|𝑇 | containing the sum of all votes at the specific
time slots.

As selection rule for the agreed time slot 𝑡𝑎, the earliest time
slot for which 𝑡𝑎 = |𝑃 | is chosen. It is not sufficient to take
the time slot with the maximum votes, since a malicious voter
could send values 𝑣𝑝,𝑡 below 0. This is certainly a limitation
compared to other practical implementations without privacy,
but the priority in our scheme is to ensure verifiability and
privacy (see Section VI-A on page 6). The cryptographic DCSP
approach in [5] shares the same limitation while being not
fully verifiable and substantially more complex.

The message exchange of the three mandatory phases is
illustrated in Figure 2.

D. Result Verification

A malicious voter could send values 𝑣𝑝,𝑡 different from 0 or
1. Since this would be completely invisible to the others, we
have to verify the result after publication. The first step of this
phase is that everybody checks, if he voted for this specific
time slot. This is done in most cases anyway, when the voter

Alice Bob Carol Server

𝑇, 𝑃
𝑇, 𝑃

𝑇, 𝑃 email
notification

�⃗�𝑝𝑎,𝑝𝑐
�⃗�𝑝𝑐,𝑝𝑎

�⃗�𝑝𝑎,𝑝𝑏
�⃗�𝑝𝑏,𝑝𝑎

�⃗�𝑝𝑏,𝑝𝑐
�⃗�𝑝𝑐,𝑝𝑏

key
exchange

poll
initialization

𝑑𝑝𝑎

𝑑𝑝𝑏

𝑑𝑝𝑐 vote
casting

𝑑𝑝𝑎
, 𝑑𝑝𝑏𝑑𝑝𝑎 , 𝑑𝑝𝑐𝑑𝑝𝑏

, 𝑑𝑝𝑐
email
notification

result
publication

Figure 2. Basic scheme: message exchanges in successful protocol run

inserts the event in his personal calendar. If a voter discovers
an inconsistency here, he can request the decryption of the
individual votes for the agreed time slot 𝑡𝑎. If everybody stuck
to the protocol, this is no privacy problem because one can
infer that everybody must have sent a 1 from the mere fact that
the time slot has been selected. This means, after 𝑡𝑎 is found,
every voter 𝑝𝑖 has to publish his signed shared secret keys
𝑘𝑝𝑖,𝑝𝑗 ,𝑡𝑎 , sig𝑝𝑗

(𝑘𝑝𝑖,𝑝𝑗 ,𝑡𝑎) for the selected time slot if at least
one voter demands it. With these keys, the respective elements
𝑑𝑝𝑖,𝑡𝑎 of the encrypted vote vectors 𝑑𝑝𝑖

can be decrypted and
it can be verified that every voter has casted a 1. However, a
malicious voter can send values higher than 1 in an attempt to
compromise the privacy for one specific time slot (‘Has my
husband voted for the date of our wedding anniversary?’). This
attack will be discussed in Section VI-B on page 6.

V. EXTENSIONS

A. Simplifying the Key Exchange

Securely exchanging a truly random number with every
participant can be a problem for practical implementations. To
avoid this, one can resort to Diffie–Hellman key agreement [37].

Instead of exchanging a random number with every other
participant, a voter may register himself at a key exchange
server. This enrollment can be used afterwards for several polls
with different sets of voters.

Let 𝑞 be the modulus and 𝑔 the generator of the Diffie–
Hellman key agreement protocol, both are constant for all
potential voters and polls. Each voter 𝑝 registers in three steps:

1) Fetch the modulus 𝑞 and the generator 𝑔 from the server.
2) Choose a random number and store it as Diffie-Hellman

secret key sec𝑝 .
3) Calculate the public key pub𝑝 = 𝑔sec𝑝 mod 𝑞 and publish

it on the server.
Instead of the key exchange described in Section IV-A on

the preceding page, a key 𝑘𝑝𝑖,𝑝𝑗 ,𝑡 shared between voters 𝑝𝑖



and 𝑝𝑗 in matrix 𝑘𝑝𝑖
can be calculated for a specific poll with

a universal unique poll identifier uuid ∈ UUID ⊆ Z as,

𝑘𝑝𝑖,𝑝𝑗 ,𝑡 =

{︃
𝒢(dh𝑝𝑖,𝑝𝑗

, uuid, 𝑡) mod 𝑛 if 𝑝𝑖 < 𝑝𝑗

−𝒢(dh𝑝𝑖,𝑝𝑗
, uuid, 𝑡) mod 𝑛 otherwise,

(4)

where dh𝑝𝑖,𝑝𝑗 = 𝑔sec𝑝𝑖 ·sec𝑝𝑗 mod 𝑞 is the Diffie–Hellman secret
calculated by 𝑝𝑖 and 𝑝𝑗 , and 𝒢 : Z𝑞 × UUID × 𝑇 → Z is a
deterministic function with the following properties:

1) Given a set of triples (𝑡𝑎, uuid, 𝑘𝑝𝑖,𝑝𝑗 ,𝑡𝑎) for two voters
𝑝𝑖, 𝑝𝑗 with a time slot 𝑡𝑎 ∈ 𝑇 , a poll identifier uuid ∈
UUID and the key 𝑘𝑝𝑖,𝑝𝑗 ,𝑡𝑎 , it should be impossible to
distinguish whether another triple (𝑡𝑏, uuid

′, 𝑘𝑝𝑖,𝑝𝑗 ,𝑡𝑏),
for any other time slot 𝑡𝑏 ∈ 𝑇, 𝑎 ̸= 𝑏 or poll id uuid′ ∈
UUID, uuid ̸= uuid′, is valid according to Equation 4.

2) For input triples (dh, uuid, 𝑡) with any two parameters
fixed and the third parameter drawn from a uniform
distribution over its domain, 𝒢(dh, uuid, 𝑡) mod 𝑛 is in-
distinguishable from uniform random numbers over Z𝑛.

The first property ensures that nobody is able to calculate
keys for arbitrary time slots even after the release of the key
for the agreed time slot 𝑡𝑎 in the verification phase (compare
Sect. IV-D on the previous page) and even if keys from more
than one poll are known. The uniform distribution ensures the
secrecy of the votes: every key is equally probable.

A possible instance of 𝒢 is a decryption function
decrkey(ciphertext) of a symmetric cipher, which resists known-
plaintext attacks. The construction is, 𝒢(dh𝑝𝑖,𝑝𝑗

, uuid, 𝑡) =
decrdh𝑝𝑖,𝑝𝑗 (uuid||𝑡), where || is the concatenation operator.

B. Omitting the Key Signatures

To completely avoid initial communication between voters,
the key signatures sig𝑝𝑖

(𝑘𝑝𝑗 ,𝑝𝑖,𝑡) have to be omitted as well.
For this, one can use a function ℱ : Z → Z, such that

1) Property 2 mentioned above for 𝒢(·) mod 𝑛 should also
apply to ℱ(𝒢(·)) mod 𝑛, and

2) ℱ(·) mod 𝑛 is preimage resistant, i. e., for any 𝑦 ∈ Z𝑛,
it is hard to find an 𝑥 such that ℱ(𝑥) mod 𝑛 = 𝑦.

Then Equation 4 can be replaced with:

𝑘𝑝𝑖,𝑝𝑗 ,𝑡 =

{︃
ℱ(𝒢(dh𝑝𝑖,𝑝𝑗

, uuid, 𝑡)) mod 𝑛 if 𝑝𝑖 < 𝑝𝑗

−ℱ(𝒢(dh𝑝𝑖,𝑝𝑗
, uuid, 𝑡)) mod 𝑛 otherwise.

(5)
Instead of revealing the key 𝑘𝑝𝑖,𝑝𝑗 ,𝑡 in the result verifica-
tion phase (compare Sect. IV-D), every voter 𝑝𝑖 discloses
𝒢(dh𝑝𝑖,𝑝𝑗

, uuid, 𝑡), from which the keys can be calculated. The
preimage resistancy of ℱ(·) mod 𝑛 ensures that a malicious
voter cannot cheat, as explained in Equation 8 on the following
page. A hash function h can be used to implement ℱ .

With simplification of the key exchange and omitting the
signatures, no mutual communication between the voters is
needed, as illustrated in the simplified protocol of Figure 3.
Putting everything together, the key calculation is,

𝑘𝑝𝑖,𝑝𝑗 ,𝑡 =

{︃
h(decrdh𝑝𝑖,𝑝𝑗 (uuid||𝑡)) mod 𝑛 if 𝑝𝑖 < 𝑝𝑗

−h(decrdh𝑝𝑖,𝑝𝑗 (uuid||𝑡)) mod 𝑛 otherwise.
(6)

Alice Bob Carol Server

𝑇, 𝑃
𝑇, 𝑃

𝑇, 𝑃 email
notification

poll
initialization

𝑑𝑝𝑎

𝑑𝑝𝑏

𝑑𝑝𝑐 vote
casting

𝑑𝑝𝑎
, 𝑑𝑝𝑏𝑑𝑝𝑎

, 𝑑𝑝𝑐𝑑𝑝𝑏
, 𝑑𝑝𝑐

email
notification

result
publication

Figure 3. Extended scheme: message exchanges in successful protocol run

already voted
not yet voted

new voter
already exchanged
newly exchanged

Figure 4. Key graphs before (top) and after (bottom) dynamic joining

C. Dynamic Joining

It may be desirable to add a voter after a poll has started.
With some restrictions, this can be done. The new voter may
now exchange keys with all voters who have not submitted
a vote up to this moment.2 Than, the anonymity set for the
pending voters has increased and the anonymity set for all
voters who have already participated stays the same. Figure 4
illustrates how the key graph changes after dynamic joining.

In theory it is possible for the new voter to exchange keys
with voters who have already participated as well. These voters
would resubmit a new encrypted vote vector including the
newly exchanged key. Unfortunately, this does not increase
the anonymity because the new key can be calculated by
simply subtracting the old vote from the new one. To increase
the anonymity of voters who already submitted, they have
to exchange new keys with all others. This is equivalent to
restarting the entire poll.

D. Dynamic Leaving

Analogously, it may occur that one or more voters should
leave a running poll (e. g., one may want to schedule the event
before all invited voters have actually casted their votes). This
is possible too, as the remaining voters know all the shared keys
of a leaving voter. Every voter 𝑝𝑖 who shares a key with the
leaving voter 𝑝 has to agree to the reduction of the anonymity
set. He does so by disclosing the |𝑇 | keys 𝑘𝑝𝑖,𝑝,𝑡 that he shares

2If executing the extended scheme, they can be calculated newly instead of
exchanging.



with the leaving voter.3 With these keys, a surrogate encrypted
vote vector 𝑑𝑝 of the leaving voter 𝑝 can be composed with
it’s elements:

𝑑𝑝,𝑡 = 1−
|𝑃 |∑︁

𝑖=1,𝑝𝑖 ̸=𝑝

𝑘𝑝𝑖,𝑝,𝑡 mod 𝑛 . (7)

The protocol proceeds as described above including the
surrogate vote(s).

Note that there is no need that voters who have not exchanged
a key with the leaving voter agree to the anonymity set
reduction. Their anonymity set is not affected anyway. Further
there is no need to seek a leaving voter’s cooperation.

VI. ANALYSIS

Now we explain how our scheme fulfills the requirements
stated in Section II-B. When necessary, we point out differences
between the basic scheme (Sect. IV) and its extensions
(Sect. V).

A. Verifiability

An attacker could try to manipulate the vote values 𝑣𝑝,𝑡
to values different from 0 or 1. To prevent outside attackers
from modifying the communication channel (e. g., adding or
subtracting 1 to an encrypted vote 𝑑𝑝,𝑡 ), the voters can verify
if their own votes are listed correctly at the server. Another
defense is signing the encrypted vote vectors 𝑑𝑝 .

The selection rule (cf. Sect. IV-C on page 4) and the result
verification phase (cf. Sect. IV-D on page 4) prevent malicious
voters from casting invalid votes.

Due to the selection rule, there is no reason to cheat by
sending a logical value below 0. Assuming all others are honest,
this would rule out the chance for the specific time slot to be
chosen. But as we only accept time slots where all voters are
available, it would make no difference for an attacker sending
0 or a lower value. Of course, a voter can always attack the
availability of the system by casting 0 for every time slot and
remain anonymous. Anonymity could also stimulate ‘legal-but-
selfish’ votes, i. e., setting all time slots to 0 except the preferred
one. Such strategies might be discouraged by the transparency
in current privacy-unfriendly applications. However, this is
ultimately a behavioral question and as such largely outside
the scope of the protocol.

In the result verification phase, every voter can verify that
no other voter sent a value higher than 1. To hide this attack,
a malicious voter could tamper with the key in the verification
phase to frame another (innocent) voter. For example, voter
Mallory 𝑝𝑚 has submitted 𝑣𝑝𝑚,𝑡𝑎 = 2 and tries to hide her
behavior in the verification phase. This can be done by first
decrementing one random key she added to the vote and then
publishing this modified key. When decrypting her vote, it
would now look like she has published a 1 and another voter
(e. g., Bob 𝑝𝑏) has published the vote 𝑣𝑝𝑏,𝑡𝑎 + 1. As Bob does
not cooperate with Mallory, he will publish the right key, which

3Note that the key graph is not necessarily complete if dynamic joining has
been used.

decrypts the correct votes and there is a situation of Bob’s
word against Mallory’s. Due to the fact that all participants
have signed the keys they share with the others, Bob can prove
that Mallory presented a wrong key.

In the simplified key exchange (cp. Sect. V-A on page 4),
Mallory cannot cheat, either. Assuming that 𝑝𝑚 < 𝑝𝑏, she
would at least have to find an 𝑥 so that

𝑘𝑝𝑚,𝑝𝑏,𝑡 − 1 = ℱ(𝑥) mod 𝑛. (8)

Solving this problem is equivalent to breaking the preimage
resistancy of ℱ(·) mod 𝑛.

To further improve her strength, Mallory can collude within
a set of voters 𝑝1, . . . , 𝑝𝑐 to:

1) enforce a time slot 𝑡 by ensuring that the sum of their
votes is higher than the number of cheating voters (𝑣𝑝1,𝑡+
. . .+ 𝑣𝑝𝑐,𝑡 > 𝑐); and to

2) hide this attack by consistently lying about their keys so
that the result verification leads to votes in the allowed
range (0 ≤ 𝑣𝑝1,𝑡 + . . .+ 𝑣𝑝𝑐,𝑡 ≤ 𝑐).

The colluding voters’ problem is to ensure that their key
modifications sum up to 0. This property stems from the
pairwise inverse key exchange. Since the colluding voters have
to keep the sum of their keys constant, the sum of their votes
remains constant, too. This renders the attack impossible.

B. Privacy

To attack Bob’s privacy, Mallory has to cryptanalyze Bob’s
encrypted vote vector or parts of it. Since in the basic scheme,
each element of this vector is encrypted with an information-
theoretically secure one-time pad, the only possibility to obtain
the availability pattern is in getting hold of all the other keys.
Finding the right keys is hard in the basic scheme and assumed
to be hard with the Diffie–Hellman extension. As already
discussed in Section V-A on page 4, the properties of the two
functions ℱ and 𝒢 guarantee the secrecy of the vote in case
of the extended key exchange.

The apparent feature dynamic leaving (cp. Section V-D on
the previous page) can in fact be abused to obtain the keys
from other voters. If Eve is able to hold Bob’s message back,
she probably can convince the others to kick Bob from the
poll. If she convinces all other voters, she gets Bob’s keys
and can decrypt his entire vote vector. Thus she does not
only prevent Bob from contributing his preferences, but also
compromises his privacy regarding his availability pattern. A
reliable broadcast channel would prevent Eve from successfully
launching this attack.

As discussed in the previous section, a malicious voter can
send a value higher than 1 to increase the chance of winning
for a specific time slot. Consider for instance an attacker who
guesses that three other voters cannot participate at his favorite
time, so she could cast a value of 4 to compensate for the
three missing votes. Because of result verification, the protocol
violation will be detected and the agreed time slot will be
declared as invalid. Nevertheless, this way an attacker still can
compromise the privacy of voters. She thus could discover
the availability of voters at a specific time slot. However, the



attacker will be discovered afterwards. If this goes along with
some cost (penalty, reputation loss, etc.), it makes such attacks
unattractive.

C. Untrusted Server

Only very little trust is required in the server. Its mere
functionality is to provide a (not necessarily anonymous)
blackboard which collects and jointly publishes the encrypted
vote vectors. These must not be published before the last voter
has voted. Otherwise one voter may wait until all but him have
voted and can calculate the preliminary result vector before
casting his own vote. This is not a serious restriction and it
can be relaxed with one additional communication phase in
which all voter have to commit to their votes.

D. Usability

Both the sanity check that the correct vote vector has
been published and the result verification can be done by a
client program, the usability of which is beyond the scope
of the protocol. To discuss the usability of the scheme,
the main criterion is the number of message exchanges, or
more precisely the number of user interactions required to
successfully schedule an event.

In the initialization phase, every voter has to exchange a
vector of keys with every other voter. As this key exchange
would require many message exchanges, we proposed to
simplify it using Diffie–Hellman key agreement (cf. Sect. V-A).
With this extension, every voter must register once at the voting
server. As this initially exchanged key can be used for all
future polls, this step can be neglected. It is not uncommon for
practical applications to require a similarly complex enrollment,
e. g., to register a user account.

For successful schedulings (i. e., no inconsistencies due to
attacks occur), the remainder of our protocol needs no more
message exchange compared to existing (privacy-unfriendly)
event schedulers. In case of an attack, there is one more
communication phase: the result verification. This is a trade-off
made in our scheme to reduce the amount of trust to be placed
in the server. Compared to the most efficient election schemes,
the same number of message exchanges is needed to ensure
multi-lateral security [38].

Note that the size of the messages is certainly somewhat
larger than in naive implementations (approximately by factor
log 𝑛), but since bandwidth is not such a scarce resource in
most cases, we deem the usability impact small compared to
the gain in voters’ privacy.

E. Computational Complexity

Finally we evaluate the overall efficiency of our extended
scheme and show that it is more efficient than a repeated
application of the election schemes in the literature.

Looking from the server’s perspective, the scheme is abso-
lutely efficient as no computation needs to be done there. The
only purpose of the server is to provide a blackboard where
the vote vectors are published, and to keep them secret until
the last one has been received.

Regarding the voters, the initialization requires a random
number sec𝑝 and deriving a public key pub𝑝 = 𝑔sec𝑝 mod 𝑞.
As mentioned in the previous section, this initial key exchange
is reusable for all future polls. So this step can be neglected.
Remember that for the poll initialization of our basic scheme,
the user would have to exchange a key for every time slot and
calculate a signature for each. This would be rather inefficient.
Although the dimension of the key matrix is the same for the
extended scheme, it can be computed more efficiently. The
most time-consuming operation in Equation 6 on page 5 is the
exponentiation 𝑔sec𝑝𝑖 ·sec𝑝𝑗 mod 𝑞. As we can reuse the result
for each time slot, every voter 𝑝𝑖 has to calculate it only once
for every other voter 𝑝𝑗 , 𝑗 ̸= 𝑖. Furthermore, every voter has
to calculate |𝑇 | · (|𝑃 | − 1) symmetric decryptions and if the
result verification phase is needed, every voter has to calculate
|𝑇 | · (|𝑃 | − 1) hashes to retrieve the keys for the agreed time
slot 𝑡𝑎. Another time-consuming operation is the asymmetric
signature introduced in Section VI-A on the previous page.
Every voter has to calculate 1 and verify |𝑃 | − 1 signatures.

To sum it up, in a successful run of the extended scheme,
every voter has to calculate |𝑃 | − 1 discrete exponentiations,
|𝑇 | · (|𝑃 | − 1) hashes and symmetric decryptions, and one
digital signature. All other computations are additions modulo
𝑛, which are cheap enough to be neglected. Efficient and
sufficiently secure hash as well as symmetric ciphers are
abundant, so the reuse of expensive operations lets our scheme
scale well in the number of time slots.

Remark that even without the extensions, our basic scheme
is more efficient than existing election schemes repeated |𝑇 |
times.

VII. CONCLUSION

We have proposed a privacy-enhanced event scheduling
scheme that is suitable to be implemented in practical Web 2.0
sites, groupware applications, or as function in future privacy-
enhanced identity management systems [39].

The scheme is efficient and scales, in terms of hash and
symmetric encryption functions, linearly in the number of
possible points in time. The effort per voter in terms of
asymmetric cryptographic operations scales linearly in the
number of voters. Moreover, no central trusted entity is required.
Practical aspects are considered, such as dynamic joining and
leaving of participants in running polls.

Future extensions could complement these features, e. g., by
integrating a threshold scheme, dynamic insertion and deletion
of time slots, updating and revoking votes, or allowing other
decision rules than unanimous agreement to schedule an event
(e. g., maximum vote, or more than two options). Even with
unanimous agreement, the risk of denial-of-service or legal-but-
selfish votes (cf. Sect. VI-A on the preceding page) could be
reduced by letting voters prove that they signaled availability
for more than a certain minimum number of time slots. Other
directions of research could be approaches to event scheduling
based on mixes or blind signatures.

In the near future, we plan to actually implement the
proposed scheme and make it available to the public as Web 2.0



application. Even in this scenario, we want to realize the gentle
trust assumptions with respect to a web server and execute
as much as possible in the clients’ web browsers. We are
very confident that we will reach a better performance for
verification than found in the literature at other places (e. g.,
Helios by Adida needs 4 hours for result-verification [40]).

ACKNOWLEDGMENTS

The authors want to thank Immanuel Scholz for ideas and
discussion. Helpful comments from Matthias Kirchner, Stefan Köpsell,
Andreas Pfitzmann, Sandra Steinbrecher, and the anonymous reviewers
have been incorporated.

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007–
2013) under grant agreement No. 216483.

REFERENCES

[1] T. O’Reilly, “What is Web 2.0,” http://www.oreilly.de/artikel/web20.html,
Sep. 2005.

[2] M. Näf, “Doodle homepage,” http://www.doodle.com, Jan. 2009.
[3] M. S. Franzin, E. C. Freuder, F. Rossi, and R. Wallace, “Multi-agent

meeting scheduling with preferences: Efficiency, privacy loss, and solution
quality,” AAAI Technical Report WS-02-13, 2002.

[4] R. Greenstadt, J. P. Pearce, E. Bowring, and M. Tambe, “Experimental
analysis of privacy loss in DCOP algorithms,” in Proc. of ACM AAMAS.
New York: ACM Press, 2006, pp. 1424–1426.

[5] M. Yokoo, K. Suzuki, and K. Hirayama, “Secure distributed constraint
satisfaction: Reaching agreement without revealing private information,”
Artificial Intelligence, vol. 161, pp. 229–245, 2005.

[6] R. Grimm, R. Krimmer, N. Meißner, K. Reinhard, M. Volkamer, and
M. Weinand, “Security requirements for non-political internet voting,”
in Electronic Voting, ser. LNI, R. Krimmer, Ed., vol. 86. GI, 2006, pp.
203–212.

[7] O. Cetinkaya, “Analysis of security requirements for cryptographic voting
protocols (extended abstract),” in ARES. IEEE Computer Society, 2008,
pp. 1451–1456.

[8] L. Mitrou, D. Gritzalis, and S. K. Katsikas, “Revisiting legal and
regulatory requirements for secure e-voting,” in SEC, ser. IFIP Conference
Proceedings, A. Ghonaimy, M. T. El-Hadidi, and H. K. Aslan, Eds., vol.
214. Kluwer, 2002, pp. 469–480.

[9] E. Gerck, “Voting system requirements,” The Bell, vol. 2, no. 2, pp. 3–15,
Feb. 2001.

[10] Deutscher Bundestag, “Bundeswahlgesetz für die Bundesrepublik
Deutschland,” Mar. 2008, § 35.

[11] Parlamentarischer Rat, “Grundgesetz für die Bundesrepublik Deutschland,”
May 1949, art. 38.

[12] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, un-
detectability, unobservability, pseudonymity, and identity manage-
ment – a consolidated proposal for terminology,” http://dud.inf.tu-
dresden.de/Anon Terminology.shtml, Feb. 2008, v0.31.

[13] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, 1981.

[14] J. D. Cohen and M. J. Fischer, “A robust and verifiable cryptographi-
cally secure election scheme,” in SFCS ’85: Proceedings of the 26th
Annual Symposium on Foundations of Computer Science (sfcs 1985).
Washington, DC, USA: IEEE Computer Society, 1985, pp. 372–382.

[15] J. C. Benaloh and M. Yung, “Distributing the power of a government to
enhance the privacy of voters,” in PODC ’86: Proceedings of the fifth
annual ACM symposium on Principles of distributed computing. New
York, NY, USA: ACM, 1986, pp. 52–62.

[16] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme
for large scale elections,” in AUSCRYPT, ser. Lecture Notes in Computer
Science, J. Seberry and Y. Zheng, Eds., vol. 718. Springer, 1992, pp.
244–251.

[17] C. Park, K. Itoh, and K. Kurosawa, “Efficient anonymous channel and
all/nothing election scheme,” in EUROCRYPT, 1993, pp. 248–259.

[18] K. Sako and J. Kilian, “Secure voting using partially compatible
homomorphisms,” in CRYPTO ’94: Proceedings of the 14th Annual
International Cryptology Conference on Advances in Cryptology. Lon-
don, UK: Springer-Verlag, 1994, pp. 411–424.

[19] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani, “Fault tolerant
anonymous channel,” in ICICS, ser. Lecture Notes in Computer Science,
Y. Han, T. Okamoto, and S. Qing, Eds., vol. 1334. Springer, 1997, pp.
440–444.

[20] M. Abe, “Universally verifiable mix-net with verification work indendent
of the number of mix-servers,” in EUROCRYPT, 1998, pp. 437–447.

[21] M. Jakobsson, “A practical mix,” in EUROCRYPT, 1998, pp. 448–461.
[22] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard,

“Practical multi-candidate election system,” in PODC ’01: Proceedings
of the twentieth annual ACM symposium on Principles of distributed
computing. New York, NY, USA: ACM, 2001, pp. 274–283.

[23] K. Sako, “Electronic voting scheme allowing open objection to the tally,”
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, vol. 77, no. 1, pp. 24–30, 1994.

[24] M. Ohkubo, F. Miura, M. Abe, A. Fujioka, and T. Okamoto, “An
improvement on a practical secret voting scheme,” in ISW, ser. Lecture
Notes in Computer Science, M. Mambo and Y. Zheng, Eds., vol. 1729.
Springer, 1999, pp. 225–234.

[25] B. W. DuRette, “Multiple administrators for electronic voting. Bachelor’s
thesis, Massachusetts Institute of Technology,” May 1999. [Online].
Available: http://theory.lcs.mit.edu/∼cis/theses/DuRette-bachelors.pdf

[26] D. Chaum, “Elections with unconditionally-secret ballots and disruption
equivalent to breaking RSA,” in EUROCRYPT, 1988, pp. 177–182.

[27] ——, “Secret-ballot receipts: True voter-verifiable elections,” Security &
Privacy, IEEE, vol. 2, no. 1, pp. 38–47, Jan.–Feb. 2004.

[28] D. Chaum, P. Y. Ryan, and S. Schneider, “A practical voter-
verifiable election scheme,” in Computer Security – ESORICS
2005, ser. Lecture Notes in Computer Science, vol. 3679/2005.
Springer Berlin / Heidelberg, 2005, pp. 118–139. [Online]. Available:
http://www.springerlink.com/content/ebrbl9kc81bhx98j/

[29] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman,
and P. Vora, “Scantegrity: End-to-end voter-verifiable optical- scan voting,”
Security & Privacy, IEEE, vol. 6, no. 3, pp. 40–46, May–June 2008.

[30] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc,
R. L. Rivest, P. Y. A. Ryan, E. Shen, and A. T. Sherman,
“Scantegrity II: End-to-end verifiability for optical scan election systems
using invisible ink confirmation codes.” in EVT, D. L. Dill and
T. Kohno, Eds. USENIX Association, 2008. [Online]. Available:
http://dblp.uni-trier.de/db/conf/uss/evt2008.html#ChaumCCEPRRSS08

[31] J.-M. Bohli, J. Müller-Quade, and S. Röhrich, “Bingo voting: Secure
and coercion-free voting using a trusted random number generator,” in
VOTE-ID, ser. Lecture Notes in Computer Science, A. Alkassar and
M. Volkamer, Eds., vol. 4896. Springer, 2007, pp. 111–124.

[32] D. Chaum, “Security without identification: Transaction systems to make
big brother obsolete,” Commun. ACM, vol. 28, no. 10, pp. 1030–1044,
1985.

[33] L. Cranor and R. Cytron, “Sensus: A security-conscious electronic
polling system for the internet,” 1997. [Online]. Available: citeseer.ist.
psu.edu/cranor97sensus.html

[34] M. A. Herschberg, “Secure electronic voting over the world wide web,”
Master’s thesis, Massachusetts Institute of Technology, May 1997.

[35] T. Herlea et al., “On securely scheduling a meeting,” in Trusted
Information — The New Decade Challenge (Proc. of IFIP SEC),
M. Dupuy and P. Paradinas, Eds., 2001, pp. 183–198.

[36] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of Cryptology, vol. 1, no. 1, pp.
65–75, Jan. 1988. [Online]. Available: http://www.springerlink.com/
content/m74414x28822u525/

[37] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644–654,
1976.

[38] A. Pfitzmann, “Multilateral security: Enabling technologies and their
evaluation,” in ETRICS, ser. Lecture Notes in Computer Science,
G. Müller, Ed., vol. 3995. Springer, 2006, pp. 1–13.

[39] M. Hansen, P. Berlich, J. Camenisch, S. Clauß, A. Pfitzmann, and
M. Waidner, “Privacy-enhancing identity management,” Information
Security Technical Report, vol. 9, no. 1, pp. 35–44, 2004.

[40] B. Adida, “Helios: Web-based open-audit voting,” in USENIX Security
Symposium, P. C. van Oorschot, Ed. USENIX Association, 2008, pp.
335–348.

http://theory.lcs.mit.edu/~cis/theses/DuRette-bachelors.pdf
http://www.springerlink.com/content/ebrbl9kc81bhx98j/
http://dblp.uni-trier.de/db/conf/uss/evt2008.html#ChaumCCEPRRSS08
citeseer.ist.psu.edu/cranor97sensus.html
citeseer.ist.psu.edu/cranor97sensus.html
http://www.springerlink.com/content/m74414x28822u525/
http://www.springerlink.com/content/m74414x28822u525/

	I Introduction
	II Problem Definition and Notation
	II-A Single Event Scheduling Problem
	II-B Requirements
	II-B1 Verifiability
	II-B2 Privacy
	II-B3 Untrusted server
	II-B4 Usability
	II-B5 Efficiency

	II-C Notation
	II-C1 Initiator
	II-C2 Voter (p)
	II-C3 Time slot (t)
	II-C4 Anonymity set


	III Related Work
	III-A Mixes
	III-B Homomorphic Encryption
	III-C Blind Signatures
	III-D Specific Prior Work

	IV Basic Scheme
	IV-A Poll Initialization
	IV-B Casting of Votes
	IV-C Result Publication
	IV-D Result Verification

	V Extensions
	V-A Simplifying the Key Exchange
	V-B Omitting the Key Signatures
	V-C Dynamic Joining
	V-D Dynamic Leaving

	VI Analysis
	VI-A Verifiability
	VI-B Privacy
	VI-C Untrusted Server
	VI-D Usability
	VI-E Computational Complexity

	VII Conclusion
	References

