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ABSTRACT
Applications which help users to schedule events are becom-
ing more and more important. They all have in common, that
the preferences of all participants are revealed to the other
participants. Kellermann and Böhme described a privacy-
enhanced solution of an event scheduling protocol. This
protocol has one major drawback. A meeting is only sched-
uled, if all participants are available at a common time slot
(unanimous agreement).

Within our paper, we propose an extension to this protocol,
which overcomes the restriction of unanimous agreement.
With this extension, it is possible to use less strict rules,
i. e., the decision can be made from the number of available
participants. The most commonly used decision therefore
would be to choose the time slot, which the maximum number
of participants agrees on. An implementation of the protocol,
as well as some performance measurements are presented as
well, which shows that the protocol is practical feasible.

Keywords
event scheduling, electronic voting, superposed sending, ano-
nymity, privacy-enhanced application design

1. INTRODUCTION
Since Web 2.0 applications became more and more popular,
some special purpose applications like Doodle [30] have re-
ceived much attention as well. This application lets users
create polls to “schedule an event such as a board meeting,
business lunch, conference call, family reunion, movie night,
or any other group event” [30]. To schedule an event, three
steps are necessary: create a poll, cast a vote, and close the
poll by choosing the final date. Within vote casting, every
participant submits his so called availability pattern to the
Doodle server. As privacy and security is only a secondary
goal and to keep the application simple and easy, everybody

is allowed to view and edit votes already cast. When closing
the poll, a row summing up the individual availabilities is
displayed to help with the date selection.

Even the Doodle developers have recognized that users de-
mand some privacy and security. One may create “hidden
polls” where availability patterns are visible to the initiator
only. To achieve confidentiality for the connection, one may
use encrypted access via SSL. One may create accounts and
have username/password-based access control to the votes.
However, complete trust in the Doodle server and the poll
initiator is needed in all cases.

Additionally to event scheduling, it is possible to “make a
choice among movies, menus, travel destinations, or among
any other selection” [30] with such applications. Ignoring
privacy constraints in such polls might release sensitive per-
sonal information and may influence the freedom of choice
of the participants.

Kellermann and Böhme proposed a privacy-friendly and ver-
ifiable solution for scheduling a single event [24]. It hides
availability patterns and reveals only the sum of available
participants at every time slot. Additionally, the computa-
tional complexity is independent of the number of available
time slots. However, it has the drawback that unanimous
agreement is required. As long as meetings in very small
groups are scheduled, this drawback might be acceptable.
However, when scheduling meetings with larger sets of par-
ticipants (e. g., 10 to 20), it will become difficult to find a
common time slot. Additionally, unanimous agreement com-
bined with anonymous vote casting encourages participants
to cast so called “legal-but-selfish” votes, where a participant
indicates unavailability at all time slots except the one he
wants to win.

In this paper we present an extension to the scheme, which
overcomes the strict selection rule of unanimous agreement.
After introducing the notation and stating requirements for
privacy-enhanced event scheduling in Section 2, we discuss
related work in Section 3. Section 4 describe the two main
attacks to the old scheme and to which restrictions they
lead there. How these two attacks can be prevented without
the need of unanimity is shown in Section 5 and 6. An
implementation of the protocol is presented in Section 7.
Readers who want to have a look at the whole protocol
should refer to Appendix A.
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2. NOTATION AND REQUIREMENTS
2.1 Notation
We will use the following terminology and notation:

Initiator The organizer of an event, a person who sets up
a poll. This person may also participate in the poll as
a participant.

Participant (𝑢) A participant (user) in the poll. 𝑈 is the
ordered set of all participants so that |𝑈 | is the number
of participants in the poll.

Time slot (𝑡) A specific date and time at which an event
can take place. The set of time slots is denoted by 𝑇 .

Available participants (𝜎𝑡) The sum of available partici-
pants at time slot 𝑡.

Selection rule A function which decides about which time
slot is chosen.

Anonymity set A set of participants, within which a spe-
cific participant is not identifiable [34].

2.2 Requirements
An event scheduling application typically schedules an event
in a group of a few dozens of people. Even if there are use
cases, where scheduling events in a group of people who do
not know each other are imaginable,1 the most common use
case of such an application is to schedule an event within a
closed group where all participants know each other. The
following requirements should apply to a privacy-enhanced
event scheduling application [17, 23]:

Verifiability Every participant should be able to verify that
no other participant has cheated and that his vote has
been counted.

Privacy Nobody should learn more than absolutely neces-
sary about the availability of other participants and
thus should not be able to infer on their identity, i. e.,
every participant should only learn that the one specific
chosen time slot fulfills the selection rule.

Untrusted single entity As we do not know anything
about a possible attacker in advance, the system should
consider minimal assumptions about the attacker. Be-
cause of that, as little trust as possible should be placed
in any single entity.

Usability An application should not require much more
user interaction than existing event schedulers (e. g.,
message exchanges, program installation etc.).

Efficiency The scheme should be efficient for large schedul-
ing problems with many possible event dates.

1e. g., one needs to schedule some lecture and wants to find
out the most acceptable time slot for the students

3. RELATED WORK
There are several approaches dealing with event scheduling.
It can be seen as distributed constraint satisfaction / optimi-
zation problem (DCSP/DCOP) or as an instance of electronic
voting. We will discuss DCSP/DCOP approaches first (Sec-
tion 3.1) and look at e-voting afterwards (Section 3.2). In
Section 3.3 we will discuss specific publications about single
event scheduling.

3.1 DCSP/DCOP
A constraint optimization problem consists of a set of vari-
ables within finite domains and a set of cost functions. The
goal of the optimization is to find an assignment of the
variables so that the global costs are minimized. Solving
this problem in a distributed way means that each partici-
pant holds its own set of variables and cost functions. The
solution to the problem is found by exchanging messages
with assignments to variables and their costs between the
participants.

There exist many algorithms for DCSP [25, 39, 41] and
DCOP [26–28] and measurements of the information leakage
were done by Franzin [14] and Greenstadt [16]. With the
help of these algorithms, complex scheduling problems may
be solved (e. g., scheduling of many events, where different
subsets of the participants participate in each event with
constraints about place, travel time etc.). However, all DCOP
algorithms share the problem that they are complex in terms
of message exchanges even for basic scenarios. To solve the
problem of message exchanges, agents are used, which send
and receive the messages. As usual users do not want to
setup such an agent at some server, they have to run it locally
and have to be online at the same time.

Therefore, the DCOP approach is too complex in terms of
message exchanges and a simpler solution for the simpler
problem of scheduling a single meeting would be appropriate.

3.2 E-Voting
There is a lot of literature about electronic voting. It can
be categorized into approaches based on mixes [1, 9, 21,
31, 33], homomorphic encryption [5, 6, 11, 37], and blind
signatures [8, 13, 15, 32, 36].

The difference between privacy-enhanced event scheduling
and e-voting, and why e-voting cannot be applied directly
to event scheduling has been discussed already [24]: One of
the main design criteria of electronic voting schemes is to
have a computation and communication complexity, which is
independent from the number of participants (voters). This
is a valid assumption, as an e-voting scheme should run in
a scenario with millions of voters. This design criterion can
be relaxed in our approach, as we deal with smaller closed
groups of participants.

A design criterion for event scheduling should be that the
computational complexity of the scheme scales in the number
of time slots. For example, it may be desirable to agree on
a 1 hour meeting within the next two weeks. As a typical
working-week has 40 hours, assuming that meetings are
aligned to full hours, we would end up with 40 votes per week.
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Table 1: Execution time for an exponentiation mod-
ulo a 786 bit long integer in JavaScript on an In-
tel Pentium 4 Duo with 2.8GHz, 2GB RAM run-
ning Windows XP SP3 with different libraries and
browsers

Wu [40] Leemon [4] Shapiro [38]

Internet Explorer 8 2.80 s 5.09 s (crashes)
Firefox 3.6.6 0.79 s 0.82 s 6.65 s
Safari 5.0 0.90 s 0.15 s 4.59 s
Opera 10.60 0.31 s 0.18 s 3.39 s
Google Chrome 5.0 0.17 s 0.25 s 1.36 s

Assuming possible start dates at every quarter of the hour,
we would end up with 40 · 4 = 160 starting times per week.
This totals to 320 different starting times which all require a
binary vote. Current implementations like the general doodle
interface certainly run into usability problems when offering
polls with 320 options. But it is easy to conceive interfaces
to personal electronic calendars, similar to common office
groupware, and in fact doodle implemented such an interface
recently [29].

However, if one applies e-voting schemes directly to event
scheduling, they all have in common that the number of
asymmetric operations scales linear with the number of time
slots, i. e., one needs at minimum one asymmetric operation
per time slot. Let us assume, we want to build a Web 2.0 ap-
plication which should run completely within a browser. To
perform some cryptography on client side, a programmer has
two options to use as a programming language: JavaScript
and Flash. There exist BigInteger libraries for both pro-
gramming languages. However, JavaScript is available at
more browsers and platforms. We implemented a perfor-
mance measurement for a discrete exponentiation modulo a
786 bit long integer. We measured the execution time which
is needed with different public available libraries on the most
common used browsers. We tried all public libraries we
found, and measured the ones from Wu [40], Leemon [4], and
Shapiro [38].2 Table 1 shows how much time is needed for
one asymmetric operation. One can easily see that wasting
asymmetric operations would result in a large time penalty
and would make an application unusable. I. e., assuming only
one asymmetric operation per time slot using the library of
Wu would need approx. 2.8 s · 320 ≈ 15 min of computation
in our example above. Having a low computation complexity
is even more important considering small mobile devices
like smartphones which are much more limited in speed and
energy.

Web-based e-voting systems found in the literature are E-
Vox [18] and Helios [2]. However, E-Vox seems to be no longer
available and Helios crashed when we tried to configure even
a simple poll [3]. In addition, poll verification is done with a
Python script in case of Helios Voting, which is mentioned to
need about 4 hours for poll auditing [2]. Another implemen-

2The table shows only 3 of the 5 investigated libraries. The
remaining two were too slow to be mentioned here. Note,
that we didn’t investigate, why the library from Shapiro
crashes on Internet Explorer, as it was the slowest of the 3
remaining anyway.

tation is the Java-based Civitas [10]. This implementation
currently does not work in a web-based manner, but might
be turned into an applet in the future.

3.3 Single Event Scheduling
Herlea et al. proposed a “custom-made negotiation proto-
col” to secure and verifiable event scheduling [17], which
they implemented in a prototype named agenTa. It can be
described as a hybrid technique between of homomorphic
encryption, blind signatures and mixes. The protocol is de-
signed to schedule single events through a combination of
homomorphic encryption with respect to the equality opera-
tion (addition modulo two) to blind individual availability
patterns, and an anonymous channel, which is established
by letting voters act as re-encrypting mixes. While having
efficient cryptographic operations, they need many commu-
nication phases. The authors acknowledge this and discuss
ways to trade off communication complexity against trust
assumptions. In addition, only unanimous agreement is
achieved, which is the property we want to overcome.

Another protocol was proposed by Kellermann and Böh-
me [24]. The main idea of the protocol is to use superposed
sending, generalized to other Abelian groups than GF(2) [7].
A dedicated DC-Net round is executed for every nominated
time slot. Each participant sends an encrypted 1 in the spe-
cific round if he is available at the time slot, and 0 otherwise.
Through the built-in homomorphism, the sum of the votes
is calculated. Therefore, the result of one DC-Net round is
the number of available participants at this time slot.

Because of using a DC-Net per time slot, every participant
needs a key with every other participant for every DC-Net.
To be efficient, the authors propose to use Diffie-Hellman key
agreement [12] to calculate one seed with every other partic-
ipant. This seed is used for all DC-Nets and furthermore for
all future polls. Except one additional signature, all other
operations in the scheme are symmetric.

4. LIMITATIONS OF THE OLD SCHEME
In the following, we will call the original scheme from Keller-
mann and Böhme the “old scheme”. The main problem
of using superposed sending, generalized to other Abelian
groups than GF(2) is that a participant may send values
different from 0 or 1. I. e., a participant may send values
below 0 to lower the chance for a specific time slot of being
chosen, and values above 1 to increase it. An example of
this is illustrated in Figure 1. The tables show polls with 3
participants and 4 time slots. Let Alice be 𝑢𝑎, Bob 𝑢𝑏, and
Mallory 𝑢𝑚. The votes (𝑣𝑢,𝑡) are shown inside each table.
Mallory tries to manipulate the poll in a way that time slot
𝑡3 would win. In Figure 1a she tries to decrease the sum
of 𝑡1 with sending a −1. Figure 1b shows another attack
where she sends a +2 at 𝑡3. In both polls the column of 𝑡3
results in the largest sum. Because of the anonymization of
all messages through the DC-Net, Mallory’s attack is hidden
to Alice and Bob.

Kellermann and Böhme introduced two mechanisms to over-
come this problem:
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𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 −1 0 1∑︀

1 1 0 2

(a) attacking with −1

𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 0 0 2∑︀

1 2 0 3

(b) attacking with +2

Figure 1: Different ways to attack a poll when Mal-
lory wants 𝑡3 to win. The plain text values of the
votes (𝑣𝑢,𝑡) are displayed.

1. Unanimous agreement makes attacks with values lower
than 0 unnecessary and attacks with values higher than
1 visible. As only time slots are accepted where all
participants are available, sending a 0 at some time
slot is enough to rule out the chance for the time slot
of being chosen.
Every participant checks if he voted for the chosen time
slot. If any time slot is chosen where a participant has
not vote for, somebody else sent a value higher than
1. Therefore, if everybody checks if he voted for the
chosen time slot attacks with values higher than 1 will
be detected.3

2. An optional verification phase was introduced where
possible cheaters are unmasked and attacks to the avail-
ability of the system are made unattractive.

While the scheme works well with these two methods, it is
very inflexible due to the strongly restricted selection rule.
In addition it encourages attackers to send “legal-but-selfish”
votes, where Mallory would send a 0 at all time slots but the
one she wants to win (cp. Figure 2a).

In the following, we will discuss how to extend the scheme in a
way that sending values different from 0 or 1 can be prevented
without the need of unanimous agreement. Dropping this
restriction, an arbitrary selection rule which operates on the
sums of available participants can be used (e. g., the time
slot where most participants are available). We first discuss
how attacks with values lower than 0 (i. e., (−1)-attacks) are
prevented (Section 5) and look at attacks with higher values
(i. e., (+2)-attacks) later (Section 6).

5. PREVENTING (−1)-ATTACKS
We already showed a (−1)-attack in Figure 1a. Another
example is shown in Figure 2b where Mallory tries to attack
the poll more naively. There, Mallory sends a −1 at all time
slots she does not want to win (𝑣𝑢𝑚,𝑡0 = 𝑣𝑢𝑚,𝑡1 = 𝑣𝑢𝑚,𝑡2 =
−1). This attack can be detected easily at time slot 𝑡2, where
the result is −1. The result of every time slot should be a
value between 0 and the number of all participants, which is
3 in this example. In our extension, we use the fact that the
result of a vote at some time slot cannot be lower than 0.

Instead of using one dedicated DC-Net round for every time
slot, we propose to use several simultaneously running DC-

3In Figure 1b Alice would recognize that there occurred an
attack as she send a 0 at the time slot which was chosen.

𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 0 0 1∑︀

1 2 0 2

(a) legal-but-selfish vote

𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory −1 −1 −1 1∑︀

0 1 −1 2

(b) naive attack

Figure 2: Two examples what could happen when
Mallory wants 𝑡3 to win. Sending a legal-but-selfish
vote (a) would not help 𝑡3 to win with certainty.
Sending a −1 at all other time slots than 𝑡3 (b) would
be detected at 𝑡2 at least, as the sum should be an
element of {0, . . . , |𝑈 |}.

Net rounds. Let 𝐼 be the number of simultaneously running
DC-Net rounds. Every participant 𝑢 splits his vote 𝑣𝑢,𝑡 ∈
{0, 1} which contains his availability at time slot 𝑡 into 𝐼
partial votes 𝑣𝑢,𝑡,0, . . . , 𝑣𝑢,𝑡,𝐼−1 such that:

1. An index 𝑗 ∈ Z𝐼 for one partial vote is chosen randomly
and kept secret.

2. The partial vote with index 𝑗 (𝑣𝑢,𝑡,𝑗) is equal to the
participants’ actual vote 𝑣𝑢,𝑡 .

3. The remaining 𝐼 − 1 partial votes are equal to 0.

If all participants are honest, the following properties result
from the construction:

1. For all time slots 𝑡 ∈ 𝑇 and partial vote indices 𝑖 ∈ Z𝐼 ,
the sum of all partial votes of all participants is an
element between 0 and the number of participants
(∀𝑡, 𝑖 :

∑︀
𝑢∈𝑈 𝑣𝑢,𝑡,𝑖 ∈ {0, . . . , |𝑈 |}).

2. At one time slot, the sum of all partial votes of all
participants is the sum of all available participants at
this time slot (𝜎𝑡 =

∑︀
𝑢∈𝑈

∑︀𝐼−1
𝑖=0 𝑣𝑢,𝑡,𝑖).

In Figure 2b, we have seen that an attacker has to guess where
a honest participant will send a 1. With this extension it is
not enough for Mallory to guess the availability of another
participant, she further has to guess at which partial vote the
actual vote was sent. This is difficult as long as the chosen
partial vote index is random, kept secret, and the number of
partial votes per time slot Z𝐼 is sufficiently high.

Figure 3 shows an example of the vote vector splitting with
𝐼 = 3, where Mallory tries to cheat in the same way as
already shown in Figure 1a. Mallory sends a −1 at time
slot 𝑡1 (𝑣𝑢𝑚,𝑡1 = −1). The left table shows the old scheme.
There the attack would remain undetected as all elements of
the result vector are in the allowed range. The right table
shows the same vote vectors split into several vectors. There,
for time slot 𝑡1 Alice has chosen the first table (𝑖 = 0) for her
vote (𝑣𝑢𝑎,𝑡1,0 = 𝑣𝑢𝑎,𝑡1 = 1) and Bob has chosen the second
one. As Mallory has chosen the third table (𝑖 = 2) her attack
can be detected.
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𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 −1 0 1∑︀

1 1 0 2

𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0 𝑖
=

0

Bob 0 0 0 0
Mallory 0 0 0 0∑︀

0 1 0 0

Alice 0 0 0 0 𝑖
=

1

Bob 0 1 0 1
Mallory 0 0 0 1∑︀

0 1 0 2

Alice 0 0 0 0 𝑖
=

2

Bob 1 0 0 0
Mallory 0 −1 0 0∑︀

1 −1 0 0∑︀
1 1 0 2

Figure 3: Split the votes into several partial votes.
While Mallory’s attack remains undetected in the
left table, Alice and Bob are able to detect it in the
right one.

In the following, we want to compare this extension of pre-
venting (−1)-attacks with our requirements verifiability and
privacy stated in Section 2.2. A discussion of the other
requirements is done in Section 6.

5.1 Verifiability
When verifying that no attack occurred, we can distinguish
two cases:

∙ In the simpler one, one DC-Net round for one time slot
and one partial vote index results −1 (

∑︀
𝑢∈𝑈 𝑑𝑢,𝑡,𝑖 =

−1). This case occurred in the example in Figure 3.

∙ In a more complex scenario, some participant sent a 1
in some DC-Net round, but the result equals 0 due to
a (−1)-attack. This may also occur in the old scheme.
Bob for example can detect that Mallory has cheated
at 𝑡0 in Figure 2b. However, to prove that Mallory has
cheated at 𝑡0, Bob has to give up his privacy. In such
a case, Bob can decide for himself what is worth more,
his privacy or to unmask Mallory.

In the following, we first discuss the case where the privacy is
the most valuable good, and we discuss situations later where
participants are willing to give up their privacy for unmasking
attackers. For reasons of simplicity, we write all calculations
which are done in the DC-Net without the modulo operations.
Additionally, we consider only one attacker.

5.1.1 Without Privacy-Loss
Checking the correctness of a poll can be expressed by a
function. It takes all messages sent within the poll and
returns true if the poll was correct, and false otherwise 𝒱 :
Z|𝑈|×|𝑇 |×𝐼 → {true, false}. Let 𝑑 ∈ Z|𝑈|×|𝑇 |×𝐼 be the 3-
dimensional array of all DC-Net messages containing elements
of 𝑑𝑢,𝑡,𝑖 for a DC-Net message from participant 𝑢 at time

slot 𝑡 and partial vote index 𝑖. The function which checks
the correctness of the poll is defined as:

𝒱(𝑑) =

{︃
true if ∀𝑡 ∈ 𝑇, 𝑖 ∈ Z𝐼 :

∑︀
𝑢∈𝑈 𝑑𝑢,𝑡,𝑖 ∈ {0, . . . , |𝑈 |}

false otherwise.

(1)

We assume one attacker Mallory (𝑢𝑚) who tries to send a
−1 at time slot 𝑡. Assuming 𝑥 participants voting for 𝑡, the
probability of detecting Mallory’s attack is calculated by

𝑃 (𝒱(𝑑) = false | 𝑣𝑢𝑚,𝑡 = −1) =

(︂
𝐼 − 1

𝐼

)︂𝑥

. (2)

With an increasing 𝑥, the probability of detection would
decrease. In a worst case scenario w. r. t. detecting attackers
all honest participants send a 1 for all time slots (𝑥 = |𝑈 |−1)
and therefore the lower bound of the probability to detect
the attack is

𝑃 (𝒱(𝑑) = false | 𝑣𝑢𝑚,𝑡 = −1) ≥
(︂
𝐼 − 1

𝐼

)︂|𝑈|−1

. (3)

The probability of successfully performing an attack would
increase with an increasing number of participants. Therefore,
one should choose the number of DC-Net rounds 𝐼 dependent
on the number of participants |𝑈 |.

If Mallory tries to send a −2 the chance of detection increases.
In such a case she needs to find two DC-Nets where her
attack can be covered.4 Calculating this probability can be
expressed in the urn model with |𝑈 | balls. Mallory colors
two balls with different colors (the two DC-Nets where she
sends her −1). One ball is drawn and returned for every
honest participant. If both colored balls occur at least once
in the drawing, Mallory’s attack will remain undetected. The
attack would be detected in three cases:

𝑐1: None of Mallory’s balls occur in the output.

𝑐2: The first ball occurs at least once in the output, but
not the second.

𝑐3: The second but not the first ball occurs.

If all |𝑈 | − 1 honest participants vote for the attacked time
slot, the probability of the first case will reach a minimum.
It can be calculated by

𝑃 (𝑐1) ≥
(︂
𝐼 − 2

𝐼

)︂|𝑈|−1

. (4)

The probability, that one ball does not occur is
(︀
𝐼−1
𝐼

)︀|𝑈|−1

and to calculate the probabilities for the second and third
case, we have to subtract 𝑃 (𝑐1) from this to ensure that the
other ball occurs:

𝑃 (𝑐2) = 𝑃 (𝑐3) ≥
(︂
𝐼 − 1

𝐼

)︂|𝑈|−1

− 𝑃 (𝑐1) (5)

4Note that Mallory may also choose one DC-Net for sending
a −2. However, the chance for staying undetected is better
if she chooses different DC-Nets and therefore we only stick
to this case.
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Summing up the probability of detecting Mallory’s attack is
calculated by adding all three probabilities:

𝑃 (𝒱(𝑑) = false | 𝑣𝑢,𝑡 = −2) ≥

2 ·
(︂
𝐼 − 1

𝐼

)︂|𝑈|−1

−
(︂
𝐼 − 2

𝐼

)︂|𝑈|−1

. (6)

Generalized to sending the value −𝑛 this probability can
be considered as a multinomial distribution but a general
formula is out of the scope of this paper.

5.1.2 With Privacy-Loss
We already discussed that a person who sent a 1 in a DC-Net
which results in 0 is in the position to unmask the attacker
with the drawback of giving up his privacy.5 For such a
case, we can define another function checking the correctness
of the poll. This function will return false if there exists a
participant 𝑢𝑝, who can prove that he sent a 1 at a time slot
𝑡 and DC-Net round with partial vote index 𝑖 which resulted
in 0 (

∑︀
𝑢∈𝑈 𝑑𝑢,𝑡,𝑖 = 0).6 Let �̄� ∈ Z|𝑈|×(|𝑈|−1)×|𝑇 |×𝐼 be the

4-dimensional array of all keys used in all DC-Nets of the poll.
The function which checks the correctness of the poll under
the assumption that all participants are willing to disclose
their availability at one time slot to unmask an attacker is
defined as

ℬ
(︀
𝑑, �̄�

)︀
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
true if ¬∃𝑢𝑝 ∈ 𝑈, 𝑡 ∈ 𝑇, 𝑖 ∈ Z𝐼 :(︀∑︀

𝑢∈𝑈 𝑑𝑢,𝑡,𝑖 = 0
)︀
∧(︁

𝑑𝑢𝑝,𝑡,𝑖 +
∑︀

𝑢∈𝑈,𝑢 ̸=𝑢𝑝
𝑘𝑢𝑝,𝑢,𝑡,𝑖 = 1

)︁
false otherwise.

(7)

To run an undetected −1-attack under these assumptions,
Mallory needs two honest participants sending a 1 in the
same DC-Net round to hide her attack.7 The probability
that this attack is detected is calculated by the addition of
the probabilities of the two cases

𝑐1: nobody choses Mallory’s DC-Net, and

𝑐2: one participant choses Mallory’s DC-Net.

For 𝑐1, the sum of the attacked DC-Net will be −1 and
therefore 𝒱(𝑑) will fail (see Equation 3). The lower bound8

for the probability of the second case is the probability where
the output of ℬ

(︀
𝑑, �̄�

)︀
is false and can be calculated with

𝑃 (ℬ
(︀
𝑑, �̄�

)︀
= false | 𝑣𝑢,𝑡 = −1) ≥

(|𝑈 | − 1) · 1

𝐼
·
(︂
𝐼 − 1

𝐼

)︂|𝑈|−2

. (8)

5E. g., Bob could detect that Mallory cheated at 𝑡0 in Fig-
ure 2b.
6 If this sum is lower than 0, an attack occurred as well.
However, as this attack would be discovered by function 𝒱(𝑑)
(Equation 1), we want to neglect this case here.
7This is like trying to perform a −2-attack without privacy-
loss, but choosing one partial DC-Net to send the −2.
8All |𝑈 | − 1 honest participants voted for the attacked time
slot

Table 2: Lower bounds for the probability of success-
fully detecting an attack

𝐼 |𝑈 |
20 15 48.8 % 74.7 % 84.7 % (35.9 %)
20 5 81.5 % 97.3 % 98.6 % (17.1 %)
50 15 75.4 % 94.3 % 96.9 % (21.5 %)
50 5 92.2 % 99.5 % 99.8 % ( 7.5 %)

100 15 86.9 % 98.4 % 99.2 % (12.3 %)
100 5 96.1 % 99.9 % 99.9 % ( 3.9 %)
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Note that it is not possible, that 𝒱(𝑑) = true and ℬ
(︀
𝑑, �̄�

)︀
=

true (cp. Footnote 6) and therefore we can add the Probabil-
ities of Equations 6 and 8 to get the overall probability of
detecting a (−1)-attack if users are willing to disclose their
availability to unmask attackers.

5.1.3 Summary
Table 2 illustrates these formulas with some example values.
One can see that splitting the vote vector into 20 partial vote
vectors makes it rather unlikely to perform an undetected
attack against small polls with 5 participants. The chance
to detect a (−1)-vote at this time slot is at least9 81.5 %.
Additionally to these 81.5 %, the attack can be discovered
with a probability 17.1 % by one of the participants. If all
participants are willing to disclose their availability at the
attacked time slot, the detection probability is at least 98.6 %.

In case of 𝒱(𝑑) = false, the decryption of the DC-Net round
can be requested where the invalid value occured. Therefore
every participant has to reveal his key for the DC-Net round.
The single votes can be decrypted with the keys which iden-
tifies the attacker. The attacker may modify his key to hide
his attack in this phase. However, this can be prevented in
the same way as it was proposed for the verification phase
of the old scheme (see Appendix A.5 for details).

However, if availabilities should not be disclosed under any
circumstances, the attacker identification may be skipped.
One has to accept in this case that attackers are able to attack
the availability of a poll anonymously. Then one may decide
with function 𝒱(𝑑) (Equation 1) that some attack occurred,
but skip revealing keys to avoid possible decryption of votes.
Note that the decision to perform a poll with privacy loss

9if all 4 honest participants vote for a time slot
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or without has to be accepted by all participants. If every
participant may decide on his own, an attacker will always
refuse to reveal his keys for one DC-Net round, stating she
has to cover some vote.

If a participant discovers an attack with the function ℬ
(︀
𝑑, �̄�

)︀
,

he may decide on his own if he gives up his privacy to unmask
the attacker. Therefore, the lower bound for the probability
of detecting an attack is some value between both lower
bounds, depending if the actual participant which detected
the attack is willing to reveal his vote.

5.2 Privacy
The possible decryption in the verification phase to detect
the attacker may be a privacy problem. The old scheme
had the same decryption in the verification phase. However,
unlike the old scheme, the probability that this really is a
privacy problem is very low, as the attacker has to guess the
index for the DC-Net round where the victim sent his vote.
The probability of guessing the index of a specific victim is
1
𝐼
.

Attacking more than one DC-Net round with negative values
to increase the probability of hitting the victim’s DC-Net
does not help the attacker, because the goal of the honest
participants is to find only one DC-Net which was attacked.
Therefore, it is enough to disclose the keys for one attacked
round. The algorithm to choose the DC-Net round to be
disclosed should choose one of the rounds with the lowest
sum. The function 𝒟 : Z|𝑈|×|𝑇 |×𝐼 → 𝒫(𝑇 ×Z𝐼) which takes
all DC-Net messages as input, and results a set of time slot-
partial vote index-pairs (𝑡, 𝑖) which should be disclosed, can
be defined as

𝒟(𝑑) =

{︃
(𝑡, 𝑖) :

∑︁
𝑢∈𝑈

𝑑𝑢,𝑡,𝑖 = min
𝑡′∈𝑇,𝑖′∈Z𝐼

{︃∑︁
𝑢∈𝑈

𝑑𝑢,𝑡′,𝑖′

}︃}︃
.

(9)

However, as already discussed in Section 5.1, one may decide
not to disclose availability patterns with the drawback, that
attacks to the availability of the poll are possible then.

The privacy of a message in the DC-Net depends only on the
secrecy of the keys. Also the privacy of the original scheme
relied only on this secrecy. Splitting the vote vector into
several parts introduces a new point of attack. Now, the
anonymity of the message also depends on the randomness
and secrecy of the partial vote index. If an attacker can
predict at which DC-Net rounds messages from some partici-
pants occur, she can separate the other messages into smaller
anonymity sets. If all participants distribute their votes
randomly over all rounds, Mallory needs the cooperation of
the other participants to deanonymize her victim. However,
deanonymization can also be done without the help of the
different partial DC-Nets, as participants may also disclose
their shared DC-Net keys.

In a successful schedule with no attacker, one sum for every
time slot with the number of all available participants is
disclosed. This is more disclosure than demanded in the
privacy requirement. However, the information which can be
extracted from the sum of the available participants is still
very low.

normal poll

𝑡0 𝑡1 𝑡2 𝑡3

Alice 0 1 0 0
Bob 1 1 0 1
Mallory 0 0 0 2∑︀

1 2 0 3

inverted poll

𝑡0 𝑡1 𝑡2 𝑡3

Alice 1 0 1 1
Bob 0 0 1 0
Mallory 1 1 1 −1∑︀

2 1 3 0

∑︀
3 3 3 3

Figure 4: By the use of an inverted poll, the (+2)-
attack can be reduced to the (−1)-attack. Mallory
has to send a −1 at 𝑡3 in the right table, because the
sum of 𝑡3 of both tables would not be equal to the
number of participants otherwise.

6. PREVENTING (+2)-ATTACKS
In the example of Figure 1b, Alice can detect a (+2)-attack
of Mallory as she knows that the sum is an element of
{0, . . . , |𝑈 | − 1}. However, as we do not request unanimous
agreement anymore, it may be the case that Alice and Bob
did not vote for a time slot (cp. e. g., time slot 𝑡2 of Figure 1b)
where Mallory sends a 2. In such a case neither Alice nor
Bob can detect the attack on their own.

A simple solution to this attack would be to request the
verification phase in any case for the agreed time slot. This
would neither be privacy-friendly nor efficient in terms of
message exchanges.

In the following, another solution is proposed. In addition to
the normal poll, every participant votes for the same time
slots in an inverted poll. Every participant 𝑢 calculates for
every time slot 𝑡 an inverted vote 𝑣′𝑢,𝑡 which depends on his
vote 𝑣𝑢,𝑡 such that

𝑣𝑢,𝑡 + 𝑣′𝑢,𝑡 = 1. (10)

With the inverted votes 𝑣′𝑢,𝑡 , an inverted poll is done in the
same way the normal poll was done.

The sum of both result vectors, the one from the normal poll
and the one from the inverted poll, should be a vector where
all elements are equal to the number of participants |𝑈 |. By
checking this property, it is ensured that every participant
calculated the inverted vote vector according to Equation 10.
If Mallory wants to send a 2 for some time slot, she then
has to send a −1 in the inverted poll. However, splitting
the inverted vote vector into several ones, this attack can
be prevented in the same way (−1)-attacks were prevented
within the vote vector.10 Figure 4 illustrates the whole
process.

Let 𝑑 be the 3-dimensional array of all DC-Net messages sent
to the normal poll and 𝑑′ be the 3-dimensional array of all
DC-Net messages sent to the inverted tables. The function

10Note that the index of the partial vote which contains the
inverted vote is chosen independently from the partial vote
index in the normal poll.
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which checks the correctness of the inverted vote calculation
is defined as

𝒞(𝑑,𝑑′) =

⎧⎪⎨⎪⎩
true if ∀𝑡 ∈ 𝑇 :

|𝑈 | =
∑︀

𝑢∈𝑈,𝑖∈Z𝐼

(︀
𝑑𝑢,𝑡,𝑖 + 𝑑′𝑢,𝑡,𝑖

)︀
false otherwise.

(11)

6.1 Verifiability
When evaluating the result, two kinds of inconsistencies may
occur: the sum of both polls may be lower or higher than the
number of participants. As we split the votes into several
ones (cp. Section 5), we do not consider (−1)-attacks at
this point. Therefore, a value lower than the number of
participants may occur only if one or more participants sent
𝑣𝑢,𝑡 + 𝑣′𝑢,𝑡 = 0. Having such a case would mean that the
number of available participants 𝜎𝑡 would be the result of
the normal poll. The difference of the number of available
participants and the total number of participants are wrongly
cast votes.

The second kind of inconsistency is if the sum of both polls
is higher than the number of participants. As we prevented
(−1)-votes, the result of the normal poll at a time slot 𝑡
should be greater or equal than the number of available
participants at this time slot. In addition, the number of
available participants is greater than the total number of
participants minus the result of the inverted poll at a certain
time slot. Putting both inequations together, one obtains
a range which expresses the possible number of available
participants:∑︁

𝑖∈𝐼,𝑢∈𝑈

𝑑𝑢,𝑡,𝑖 ≥ 𝜎𝑡 ≥ |𝑈 | −
∑︁

𝑖∈𝐼,𝑢∈𝑈

𝑑′𝑢,𝑡,𝑖. (12)

However, as an attacker may manipulate his vote in a way
that this range results in {0, . . . , |𝑈 |}, he may attack the
availability of the poll in such a way. To unmask the attacker,
all DC-Net rounds for the inconsistent time slot can be
decrypted as shown before. If the attack discovery goes along
with some cost (penalty, reputation loss, etc.), it makes such
attacks unattractive.

6.2 Privacy
During the verification phase of an inconsistent inverted poll,
the availability of all participants at the inconsistent time
slot are disclosed. To avoid disclosure of all availabilities, one
may disclose the DC-Net rounds step by step and stop when
the attacker is found. The sequence of disclosure should
therefore be a fixed order, which is not known before every
participant stated his vote.11

In a successful run, no more information is disclosed than in
the old scheme, the inverted poll contains only redundant
information.

6.3 Untrusted Single Entity
The central server acts only as a blackboard which has to
publish all messages after everybody has cast his vote. If

11E. g., every participant may commit himself to a random
number together with his vote vector. In case of verifica-
tion all commitments are revealed and the random numbers
are added to one single seed which is used to bootstrap a
sequence.

Table 3: Comparison of the computational complex-
ity of the original scheme with unanimous agreement
and the scheme with our extension. In both cases
we assume no attack appearing

unanimous
agreement

new scheme

discrete exp. |𝑈 | − 1 |𝑈 | − 1
symmetric decr. |𝑇 | · (|𝑈 | − 1) 2 · 𝐼 · |𝑇 | · (|𝑈 | − 1)
hashes |𝑇 | · (|𝑈 | − 1) 2 · 𝐼 · |𝑇 | · (|𝑈 | − 1)

the server publishes votes before vote casting is complete,
an attacker may calculate the result before submitting his
vote. To avoid this restriction, one additional communication
phase would be needed in which all participants commit to
their vote. Compared to the old scheme, the same trust
assumptions are put into the server.

6.4 Usability
In a successful poll, two communication phases are needed.
The first one is for casting the votes and the second one is
for result publication Compared to a poll in another scenario
(e. g., Doodle), the same number of message exchanges and
user interactions are needed in a successful run. However,
every participant has to register at a central server once to
setup the asymmetric key pair.

Our extension has no negative influence to the number of
message exchanges compared to the old scheme therefore the
same number of user interactions is needed.

6.5 Efficiency
The extension presented in this paper affects the computa-
tional complexity of the old scheme only in terms of symmet-
ric cryptographic operations, i. e., the amount of asymmetric
cryptographic operations is not affected. To be precise, in the
old scheme without our extension every participant has to
calculate |𝑇 | · (|𝑈 | − 1) symmetric decryptions and hashes in
a successful poll. Assuming 𝐼 simultaneous DC-Net rounds
per time slot in our extension for (−1)-attack prevention
and a successful run (no attacks occurred), every participant
has to calculate 𝐼 · (|𝑈 | − 1) decryptions and hashes. Using
an inverted poll doubles the number symmetric operations.
Table 3 compares the efficiency of our extension with the
efficiency of the original scheme.

7. IMPLEMENTATION
The protocol has already been implemented [22]. The cryp-
tographic operations are implemented in JavaScript; no in-
stallation on client side is needed. The participant has to
trust the server that the JavaScript is delivered correctly.
To increase the acceptance even more, it is possible to vote
without non-anonymous (the Doodle way) and anonymous
in the same poll. Two screenshots of the application are
shown in Figure 5. In Figure 5a, one can see the status
shortly before Bob casts his vote. There, the tooltip shows
the 8-digit hex id of Mallory’s Diffie–Hellman key.

Figure 5b shows how a cheater is detected. Mallory tried to
send a −1 at the second time slot and a +2 at the forth one

8



Table 4: Performance measurement of the key cal-
culation in a poll with |𝑈 | = 5, 𝐼 = 20 and |𝑇 | = 10 on
an Intel Pentium 4 Duo with 2.8GHz, 2GB RAM
running Windows XP SP3

AES256+SHA256 DH total

Internet Explorer 8 9.4 s 15.3 s 28.9 s
Firefox 3.6.6 9.1 s 7.4 s 18.7 s
Safari 5.0 1.4 s 8.9 s 12.9 s
Opera 10.60 0.8 s 2.0 s 3.7 s
Google Chrome 5.0 1.3 s 2.5 s 5.1 s

(𝒱(𝑑) failed). At the third time slot she sent inconsistent
values for the normal and inverted poll and therefore 𝒞(𝑑,𝑑′)
failed.

The implementation has been done using the JavaScript
BigInteger library from Tom Wu [40]. For the symmetric
cipher, AES with 128 bit key length is used. SHA256 is used
for the hash function. For AES and SHA, the JavaScript
libraries from B. Poettering are used [35].

Table 4 shows a performance measurement of the key calcu-
lation for an example poll. One can see, that the calculation
needs about 20 s, using Firefox. From the first point of view,
this looks if the application is unusable. When browsers
run a script which needs longer calculation time, it is usual
that they ask the user if he wants to stop it. To avoid these
pop-ups, the BigInteger library was modified in a way that
it calculates exponentiations asynchronously with a callback
function. This enables that the calculation is forked in the
background and the browser can operate which avoids nasty
pop-ups. Additionally, the user can enter his preferences,
while the browser calculates the keys. After the calculation
has been done, the submit button is enabled, and the par-
ticipant can submit his vote. Assuming, that a user needs
about 20 s to enter his preferences (look up the time slots
in his personal calendar, click the buttons etc.), there is no
extra time to wait for.

To enhance the performance when users participate in several
polls or request some poll more than once, the DOM storage
is used [19]. Already calculated values are stored there to
speed up the calculations later on. This storage may be
target of possible XSS-attacks of course, but this is out of
scope for this paper.

8. CONCLUSION
We proposed a scheme, which is able to schedule events in
a privacy friendly way. Furthermore we implemented the
scheme in a Web 2.0 application. Due to the use of JavaScript
for all client side operations, no installation is needed for
the user. We therefore showed, that complex cryptography
is possible in zero footprint applications. Non-anonymous
votes as well as anonymous ones can be cast in the same poll,
which increases the acceptance of the application.

As a next step, it should be investigated how other ap-
plications can be made privacy-friendly without negatively
influencing the usability. Instead of trying to solve huge iden-

tity management solutions, one should think more of small
applications where privacy-preserving features are feasible.

As small mobile devices are becoming more and more impor-
tant, they should be the target of privacy-friendly applica-
tions research as well. Special problems arise here due to the
restriction of computation power, limited energy, and the
small user interface.

For our application, we already have some more extensions in
mind which should be investigated. Furthermore we want to
investigate whether users understand the underlying concepts
(e. g., the unusual concept, of identifying themselves to gain
more privacy, or that they have to give up privacy to unmask
attackers in some cases).
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APPENDIX
A. COMPLETE MAJORITY AGREEMENT

PROTOCOL
The complete protocol, consists of three mandatory phases
(initialization, vote casting, and result publication/verifica-
tion) and one optional attacker identification phase that is
run when inconsistencies occur. We will shortly describe the
phases in the following. Before the protocol can be run, it is
necessary that every participant registers at the poll server or
exchange a public key with everybody else. This registration
is done once, the key can be used to every following poll.

A.1 Registration
Let 𝑞 be the modulus and 𝑔 the generator of the Diffie–
Hellman key agreement protocol, both are constant for all
potential participants and polls. Each participant 𝑢 registers
in three steps:

1. Fetch the modulus 𝑞 and the generator 𝑔 from the
server.

2. Choose a random number and store it as Diffie-Hellman
secret key sec𝑢 .

3. Calculate the public key pub𝑢 = 𝑔sec𝑢 mod 𝑞 and pub-
lish it on the server.

A.2 Initialization
The initialization phase is quite similar to a Doodle poll [30].
The initiator defines a set of time slots 𝑇 and an ordered
set of participants 𝑈 . In difference to a Doodle poll, the
set of participants 𝑈 is fixed from the beginning and each
participant has to know this set.12 However, dynamic inclu-
sion and exclusion of participants were already discussed. [24,
Sects. V-C, V-D].

All parameters are sent to all participants.

A.3 Vote Casting
In the vote casting phase, every participant has to state a vote
vectors, of size |𝑇 |, which contains elements 𝑣𝑢,𝑡 ∈ {0, 1}.
For each element 𝑣𝑢,𝑡 , 0 means that the participant 𝑢 is
unavailable at time slot 𝑡, 1 signals availability.

Every participant 𝑢 calculates for every time slot 𝑡 an inverted
vote 𝑣′𝑢,𝑡 = 𝑣1𝑢,𝑡 which depends on his vote 𝑣𝑢,𝑡 = 𝑣0𝑢,𝑡 such
that

𝑣0𝑢,𝑡 + 𝑣1𝑢,𝑡 = 1. (13)

Let 𝐼 ∈ N be a security parameter.13 Every participant
splits for every time slot 𝑡 ∈ 𝑇 and 𝑥 ∈ {0, 1}, each element
𝑣𝑥𝑢,𝑡 of his vote vector into 𝐼 partial votes such that:

1. An index 𝑗 ∈ Z𝐼 for one partial vote, is chosen ran-
domly and kept secret.

2. The partial vote with index 𝑗 (𝑣𝑥𝑢,𝑡,𝑗) is equal to the
participants actual vote 𝑣𝑥𝑢,𝑡 .

12The set of participants acts additionally as anonymity set.
13compare Table 2
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Figure 6: Generation of a DC-Net key.

3. The remaining 𝐼 − 1 partial votes are equal to 0.

Every participant 𝑢𝑎 calculates for every other participant
𝑢𝑏 ∈ 𝑈, 𝑢𝑎 ̸= 𝑢𝑏 a Diffie–Hellman secret

dh𝑢𝑎,𝑢𝑏 = 𝑔sec𝑢𝑎 ·sec𝑢𝑏 mod 𝑞. (14)

For every time slot 𝑡 ∈ 𝑇 and 𝑥 ∈ {0, 1}, 𝐼 DC-Net keys
𝑘𝑥𝑢𝑎,𝑢𝑏,𝑡,𝑖

are generated. Let id be a universal unique poll

identifier.14 Let decrkey(ciphertext) be a decryption function,
which resists adaptively chosen plain-cipher-text attacks. Let
𝑛 be a modulo for the DC-Net, and h(·) mod 𝑛 a preimage
resistant hash function. Every participant 𝑢𝑎 generates DC-
Net keys with another participant 𝑢𝑏

𝑘𝑥𝑢𝑎,𝑢𝑏,𝑡,𝑖 =

{︃
h(decrdh𝑢𝑎,𝑢𝑏

(id||𝑡||𝑖||𝑥)) mod 𝑛 if 𝑢𝑎 < 𝑢𝑏

−h(decrdh𝑢𝑎,𝑢𝑏
(id||𝑡||𝑖||𝑥)) mod 𝑛 otherwise.

(15)
Figure 6 illustrates the key generation process.

After the key calculation has been done, every participant 𝑢
adds his keys to the elements of his vote vectors:

𝑑𝑥𝑢,𝑡,𝑖 = 𝑣𝑥𝑢,𝑡,𝑖 +
∑︁

𝑢′∈𝑈,𝑢 ̸=𝑢′

𝑘𝑥𝑢,𝑢′,𝑡,𝑖 (16)

All encrypted votes are sent to the central server and pub-
lished after all participants have cast their votes.

A.4 Result Publication and Verification
When all encrypted votes are published, every participant
can calculate the result by adding all encrypted votes of one
time slot. The result for time slot 𝑡 is calculated by

𝜎𝑡 =
∑︁

𝑖∈Z𝐼 ,𝑢∈𝑈

𝑑𝑢,𝑡,𝑖 (17)

To verify the result, every participant 𝑢𝑝 makes 3 checks:

1. ∀𝑡 ∈ 𝑇, 𝑖 ∈ Z𝐼 , 𝑥 ∈ {0, 1} :
∑︀

𝑢∈𝑈 𝑑
𝑥
𝑢,𝑡,𝑖 ∈ {0, . . . , |𝑈 |}

2. ∀(𝑡, 𝑖, 𝑥) ∈ {(𝑡, 𝑖, 𝑥) : 𝑡 ∈ 𝑇, 𝑖 ∈ Z𝐼 , 𝑥 ∈ {0, 1}, 𝑣𝑥𝑢𝑝,𝑡,𝑖 =

1} :
∑︀

𝑢∈𝑈 𝑑
𝑥
𝑢,𝑡,𝑗 > 0

3. ∀𝑡 ∈ 𝑇 : |𝑈 | =
∑︀

𝑢∈𝑈,𝑖∈Z𝐼
𝑑0𝑢,𝑡,𝑖 + 𝑑1𝑢,𝑡,𝑖

14The poll identifier avoids generation of similar shared keys
for different polls, which use the same time slot.

A.5 Optional Attacker Identification
If one of the checks, stated in the previous section fails, the
attacker should be unmasked. Depending on the check which
failed, the participant has to decide, what to do:

1. The DC-Net round where
∑︀

𝑢∈𝑈 𝑑
𝑥
𝑢,𝑡,𝑖 /∈ {0, . . . , |𝑈 |}

is decrypted.

2. The participant 𝑢 has to decide if he wants to give
up his privacy and asks to decrypt the DC-net round
where 𝑣𝑥𝑢,𝑡,𝑖 = 1 and

∑︀
𝑢∈𝑈 𝑑

𝑥
𝑢,𝑡,𝑗 ≤ 0. This would

reveal his availability at this time slot but unmask the
attacker.

3. All votes for time slot 𝑡 are decrypted where |𝑈 | ≠∑︀
𝑢∈𝑈,𝑖∈Z𝐼

𝑑0𝑢,𝑡,𝑖+𝑑
1
𝑢,𝑡,𝑖. This can be done as described

in Section 6.2.

If keys between participants 𝑢𝑎 and 𝑢𝑏 have to be released,
decrdh𝑢𝑎,𝑢𝑏

(id||𝑡||𝑖||𝑥) is released instead. The preimage re-
sistant hash function prevents cheating with keys here.
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