
Privacy-Enhanced Web-Based Event Scheduling
with Majority Agreement

Complete Protocol

Benjamin Kellermann

Technische Universität Dresden, Faculty of Computer Science,
D-01062 Dresden, Germany

Benjamin.Kellermann@tu-dresden.de

1 Complete Majority Agreement Protocol

The complete protocol, consists of three mandatory phases (initialization, vote
casting, and result publication/verification) and one optional attacker identifica-
tion phase that is run when inconsistencies occur. We will shortly describe the
phases in the following. Before the protocol can be run, it is necessary that every
participant registers at the poll server or exchange a public key with everybody
else. This registration is done once, the key can be used to every following poll.

1.1 Registration

Let 𝑞 be the modulus and 𝑔 the generator of the Diffie–Hellman key agree-
ment protocol, both are constant for all potential participants and polls. Each
participant 𝑢 registers in three steps:

1. Fetch the modulus 𝑞 and the generator 𝑔 from the server.

2. Choose a random number and store it as Diffie-Hellman secret key sec𝑢 .

3. Calculate the public key pub𝑢 = 𝑔sec𝑢 mod 𝑞 and publish it on the server.

1.2 Initialization

The initialization phase is quite similar to a Doodle poll [1]. The initiator defines a
set of time slots 𝑇 and an ordered set of participants 𝑈 . In difference to a Doodle
poll, the set of participants 𝑈 is fixed from the beginning and each participant
has to know this set.1 However, dynamic inclusion and exclusion of participants
were already discussed. [2, Sects. V-C, V-D].

All parameters are sent to all participants.

1 The set of participants acts additionally as anonymity set.

mailto:Benjamin.Kellermann@tu-dresden.de

2 Benjamin Kellermann

1.3 Vote Casting

In the vote casting phase, every participant has to state a vote vectors, of size
|𝑇 |, which contains elements 𝑣0𝑢,𝑡 ∈ {0, 1}. For each element 𝑣0𝑢,𝑡 , 0 means that
the participant 𝑢 is unavailable at time slot 𝑡, 1 signals availability.

Every participant 𝑢 calculates for every time slot 𝑡 a check vote 𝑣1𝑢,𝑡 which
depends on his vote 𝑣0𝑢,𝑡 such that

𝑣0𝑢,𝑡 + 𝑣1𝑢,𝑡 = 1. (1)

Let 𝐼 ∈ N be a security parameter. Every participant splits for every time
slot 𝑡 ∈ 𝑇 and 𝑥 ∈ {0, 1}, each element 𝑣𝑥𝑢,𝑡 of his vote vector into 𝐼 partial votes
such that:

1. An index 𝑗 ∈ Z𝐼 for one partial vote, is chosen randomly and kept secret.

2. The partial vote with index 𝑗 (𝑣𝑥𝑢,𝑡,𝑗) is equal to the participants actual vote
𝑣𝑥𝑢,𝑡 .

3. The remaining 𝐼 − 1 partial votes are equal to 0.

Every participant 𝑢𝑎 calculates for every other participant 𝑢𝑏 ∈ 𝑈, 𝑢𝑎 ̸= 𝑢𝑏 a
Diffie–Hellman secret

dh𝑢𝑎,𝑢𝑏
= 𝑔sec𝑢𝑎 ·sec𝑢𝑏 mod 𝑞. (2)

For every time slot 𝑡 ∈ 𝑇 and 𝑥 ∈ {0, 1}, 𝐼 DC-Net keys 𝑘𝑥𝑢𝑎,𝑢𝑏,𝑡,𝑖
are

generated. Let id be a universal unique poll identifier.2 Let decrkey(ciphertext) be
a decryption function, which resists adaptively chosen plain-cipher-text attacks.
Let 𝑛 be a modulo for the DC-Net, and h(·) mod 𝑛 a preimage resistant hash
function. Every participant 𝑢𝑎 generates DC-Net keys with another participant
𝑢𝑏

𝑘𝑥𝑢𝑎,𝑢𝑏,𝑡,𝑖
=

{︃
h(decrdh𝑢𝑎,𝑢𝑏

(id||𝑡||𝑖||𝑥)) mod 𝑛 if 𝑢𝑎 < 𝑢𝑏

−h(decrdh𝑢𝑎,𝑢𝑏
(id||𝑡||𝑖||𝑥)) mod 𝑛 otherwise.

(3)

Fig. 1 illustrates the key generation process.

symmetric
decryption
function
(PRNG)

dh𝑢𝑎,𝑢𝑏

id
𝑡

𝑖

check

𝜓
preimage
resistant
function

𝑘𝑢𝑎,𝑢𝑏,𝑡,𝑖

Fig. 1. Generation of a DC-Net key.

2 The poll identifier avoids generation of similar shared keys for different polls, which
use the same time slot.

Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement 3

After the key calculation has been done, every participant 𝑢 adds his keys to
the elements of his vote vectors:

𝑑𝑥𝑢,𝑡,𝑖 = 𝑣𝑥𝑢,𝑡,𝑖 +
∑︁

𝑢′∈𝑈,𝑢 ̸=𝑢′

𝑘𝑥𝑢,𝑢′,𝑡,𝑖 (4)

All encrypted votes are sent to the central server and published after all partici-
pants have cast their votes.

1.4 Result Publication and Verification

When all encrypted votes are published, every participant can calculate the
result by adding all encrypted votes of one time slot. The result for time slot 𝑡 is
calculated by

𝜎𝑡 =
∑︁

𝑖∈Z𝐼 ,𝑢∈𝑈

𝑑𝑢,𝑡,𝑖 (5)

To verify the result, every participant 𝑢𝑝 makes 3 checks:

1. ∀𝑡 ∈ 𝑇, 𝑖 ∈ Z𝐼 , 𝑥 ∈ {0, 1} :
∑︀

𝑢∈𝑈 𝑑𝑥𝑢,𝑡,𝑖 ∈ {0, . . . , |𝑈 |}
2. ∀(𝑡, 𝑖, 𝑥) ∈ {(𝑡, 𝑖, 𝑥) : 𝑡 ∈ 𝑇, 𝑖 ∈ Z𝐼 , 𝑥 ∈ {0, 1}, 𝑣𝑥𝑢𝑝,𝑡,𝑖

= 1} :
∑︀

𝑢∈𝑈 𝑑𝑥𝑢,𝑡,𝑗 > 0

3. ∀𝑡 ∈ 𝑇 : |𝑈 | =
∑︀

𝑢∈𝑈,𝑖∈Z𝐼
𝑑0𝑢,𝑡,𝑖 + 𝑑1𝑢,𝑡,𝑖

1.5 Optional Attacker Identification

If one of the checks, stated in the previous section fails, the attacker should be
unmasked. Depending on the check which failed, the participant has to decide,
what to do:

1. The DC-Net round where
∑︀

𝑢∈𝑈 𝑑𝑥𝑢,𝑡,𝑖 /∈ {0, . . . , |𝑈 |} is decrypted.
2. The participant 𝑢 has to decide if he wants to give up his privacy and asks to

decrypt the DC-net round where 𝑣𝑥𝑢,𝑡,𝑖 = 1 and
∑︀

𝑢∈𝑈 𝑑𝑥𝑢,𝑡,𝑗 ≤ 0. This would
reveal his availability at this time slot but unmask the attacker.

3. All votes for time slot 𝑡 are decrypted where |𝑈 | ≠
∑︀

𝑢∈𝑈,𝑖∈Z𝐼
𝑑0𝑢,𝑡,𝑖 + 𝑑1𝑢,𝑡,𝑖.

If keys between participants 𝑢𝑎 and 𝑢𝑏 have to be released, decrdh𝑢𝑎,𝑢𝑏
(id||𝑡||𝑖||𝑥)

is released instead. The preimage resistant hash function prevents cheating with
keys here.

References

1. Näf, M.: Doodle: easy scheduling. http://www.doodle.com (November 2010)
2. Kellermann, B., Böhme, R.: Privacy-enhanced event scheduling. In: PASSAT ’09.

Volume 3., Los Alamitos, CA, USA, IEEE/IFIP, IEEE Computer Society (August
2009) 52–59

http://www.doodle.com

	Privacy-Enhanced Web-Based Event Scheduling with Majority Agreement
	1 Complete Majority Agreement Protocol
	1.1 Registration
	1.2 Initialization
	1.3 Vote Casting
	1.4 Result Publication and Verification
	1.5 Optional Attacker Identification

