
Anonymous Credentials in Web Applications

– A Child’s Play with the PRIME Core

Benjamin Kellermann and Immanuel Scholz

Technische Universität Dresden
Faculty of Computer Science
D-01062 Dresden, Germany

{Benjamin.Kellermann|Immanuel.Scholz}@tu-dresden.de

Abstract.

©IFIP, (2010). This is the author’s version of the work. It is posted here by permission of IFIP for
your personal use. Not for redistribution. The definitive version was published in M. Bezzi et al.
(Eds.): PrimeLife Summer School 2009, revised and selected papers, AICT 320, pp 237–245, 2010,
(Springer).

Web applications dealing with personal data in a privacy-
friendly way have the need for anonymous credential systems. While
there are already protocols describing anonymous credential systems and
libraries, implementing the protocols, application using the libraries are
rare. Without applications supporting anonymous credentials, companies
will not start building a credential infrastructure and vice versa. This
paper presents an easy way to issue and use anonymous credentials for
web applications. By reducing the initial cost for both parties, the barrier
of “starting first” can be lowered.

Key words: anonymous credentials, security programming

1 Introduction

Imagine a web application dealing with some personal data. It lets the user
register and enter his age and nationality as well as a username and password for
access control. The service operator does not want to worry about checking the
accuracy of the personal data, so he uses a third party to certify these attributes.
This kind of application has some disadvantages, e. g., in a naive implementation,
the third party learns about the users intention to use the service. Additionally,
the access control credentials (username and password) could be given to other
people and finally the user is traceable through different sessions. All these
problems can be avoided with anonymous credentials, introduced by Chaum [1].

Anonymous credentials, presented by Camenisch and Lysyanskaya [2], provide
several features not present in “classic” credential systems. They are unlinkable,
i. e., two subsequent presentations of the same credentials can not be linked with
each other. Partial information on the attributes can be released, which means
if a credential contains multiple entries (e. g., “age is 20”, “gender is male” and
“first name is John”), only some can be revealed, hiding the remaining entries.
Relational proofs can be used for numerical entries (e. g., if a credential states
“age is 20”, the relation “age is greater than 18” can be shown without revealing
the actual value.) Finally, they offer the so called “all-or-nothing sharing”, which
means sharing one credential leads to sharing all of the owners credentials, making
it unattractive for users to disclose their credential information to others.

mailto:Benjamin.Kellermann@tu-dresden.de
mailto:Immanuel.Scholz@tu-dresden.de


238 Benjamin Kellermann and Immanuel Scholz

Many developers believe that implementing access control via anonymous
credentials and building an infrastructure for credential issuers is very complicated.
From a first point of view, it looks like a “hen-and-egg” problem. Companies,
will not start to issue anonymous credentials without applications using them.
Application developers will not start implementing access control via anonymous
credentials, when there is no infrastructure issuing them.

This paper presents an easy way to enroll and verify anonymous credentials
with the PRIME core [3], which uses the Idemix library [4]. This library already
implements many features of the Camenisch-Lysyanskaya credentials system. A
larger tutorial has been created during the development which shows additional
features not covered in this paper [5].

The document is structured as follows. Section 2 explains the communication
flow, which is done by the basic scenario and discusses, what has to be done
to set up everything on the users side. The few web application modifications,
which have to be done to use anonymous credentials with the PRIME core are
shown in Section 3 and the steps to issue credentials are given in Section 4.

2 Setup

2.1 Architectural Overview

The setup and communication flow is shown in Figure 1. One can see that in
addition to the users web browser and the web application, two other instances
are needed. These are needed to exchange data through cryptographic protocols.
We call these instances “PRIME core”. They can be compared to PGP1, in
a scenario, where an E-mail application wants to send an encrypted E-mail.
Two small programs, which intercepts the normal communication flow to do the
cryptography, are needed there as well. Note that the communication is always
initiated by the client, to ensure connectivity from behind a firewall or NAT.

Users are solely concerned with the client PRIME core installation. Ad-
ministrators of issuer services and developers also have to cope with running
and configuring a server. We will explain in the following, how a PRIME core
is launched at client side. The administrators and developers perspective is
considered at the beginning of the Sections 3 and 4.

2.2 Running PRIME on Client Side

Using the PRIME core at the users side is pretty much the same as running any
other program. After unpacking the archive prime.zip, the prime.jar can be
run without any parameter. This provides a tray icon with several menu functions
to execute the different user functions.

There are two possibilities to deflect his web traffic through the PRIME core.
The PRIME core may act as web proxy, which can be configured within the

1 Pretty Good Privacy. An application for encrypting data, especially E-mails.



Anonymous Credentials in Web Applications 239

Client Server
Web Browser Application

client
PRIME
core

server
PRIME
core

1: user enters
a Web page

2: traffic is
redirected to
HTTP-Proxy

3: PRIME client
requests web
page

4: Application asks
PRIME server

5: PRIME core
displays some
dialog asking
the User about
data to disclose

6: client shows
credentials to
server

Fig. 1. Overview of the communication flow with PRIME. The arrows indicate
the initiation of communication links.

config interface. The other possibility is to install a Firefox extension, which
watches the traffic and calls the PRIME core if needed.2

3 How to Use PRIME in an Application

3.1 Launching PRIME as a Developer

Each PRIME core offers its functionality through a set of web services. Common
web services are launched by default, which are sufficient, if the PRIME core
should act as client. At server side, additional web services have to be launched
as well as the graphical user interface has to be disabled. Because of disabling
the user interface, passwords for some components (e. g., the Java secure key
store) cannot be entered interactively. Therefore, the required passwords have to
be given on the command line or in a configuration file.

Some of the PRIME core’s web services are only launched when a password
has been specified for them to access. These passwords are there to authenticate
external programs accessing the PRIME core. They should not be confused with
credentials or data that may have to be provided to access personal information
within the PRIME data storage. If an application wants to access personal
information, it may have to provide additional authorization information.

The web services are grouped in categories (like “common”, “system”, or
“simplepolicy”). The mechanism of launching a category which is not launched by
default is specifying a password for it. This ensures that

2 This requires using Firefox of course, but it has other advantages, which might be
desirable.



240 Benjamin Kellermann and Immanuel Scholz

1. no default password leaves unprotected services unintentionally open and
2. wrong or unknown passwords are excluded as a point of failure when setting

up the system.

A typical call, sufficient to launch the PRIME core for the needs of access control
would look like:

java -jar prime.jar --gui=false --keystore.password=XYZ \

--webservice.simplepolicy.password=YZX

The PRIME core offers a built-in developer help system for its web services.
Directing a web browser to https://localhost:9906,3 one can see a web page,
describing which services are launched. Behind every function, a question mark is
displayed, with which one can access an on-line help in form of a short description
and a form to easily access the web service. This is shown in Figure 2.

Fig. 2. Two help pages offered by the PRIME core. The overview page (left) and
the description of checkAccess (right).

For debugging and developing, a set of very powerful debug web services
is available, including a direct SQL access to the database and example imple-
mentations for typical server administrative services, like configuring policies or
approving credentials.

3.2 PRIME enabled “Hello World!”

Assume a very simple “Hello World” web application consisting of one line of
code (Figure 3). This application does nothing more than printing out the string
“Hello World!”, which should be the placeholder for a point, where access control
is checked in a more complex application.

3 For the rest of the document it is assumed, that the server runs on localhost and
uses the default port 9906.

https://localhost:9906


Anonymous Credentials in Web Applications 241

1 <?php echo "Hello␣World!"; ?>

Fig. 3. Hello world web application in PHP.

Now, we want to implement access control to our “Hello World!” application
by means of an anonymous credential. For this, we have to

1. create a policy in the server’s database, and
2. modify the source code so that it asks the PRIME core to evaluate the policy

and grant or deny access.

Inserting a Policy A policy requires a so-called “protected resource” which
defines what data item the policy is about. The protected resource can be any
URI4 chosen by the developer – for example the URL of the web site to protect.
This is also called “object”, or just “resource” in some policy languages. In our
example we use the self-chosen URI “urn:hello” as identifier for the protected
resource.

PRIME supports very sophisticated policies. Different actions like read and
write are supported. Policy rules can simply depend on the disclosure of any data
or the data can be required to have a specific value. For numerical data like the
age, relations can be specified (e. g., greater than 18 years old). Developer-specific
relations are possible as well. It can be required that disclosed data is certified
by anonymous or non-anonymous credentials. Data handling policies can be
attached to data categories to specify meta information like the intended purpose
or time period which the disclosed data is used for. These policies are specified
in an XML policy language using the policy/insert web service. For the most
common case “require existence of one data category”, the much simpler web
service simplepolicy/insert can be used.5 After choosing the data category,
which a user has to show to get access, the policy is ready for use.

Modifying the Source Code We already illustrated the communication flow
of the application in Figure 1. Figure 4 tries to show this in more detail. When a
user tries to access the web page (arrow 1 and 2 of Figure 1, or the first two “GET
URL” arrows of Figure 4), the web application will ask the server-side PRIME
core, if the user is allowed or not. The web service system/checkAccess can be
used for this policy evaluation.6 It returns one of three possible values: “allow”,

4 Uniform Resource Identifier. A character string to identify a resource.
5 The on-line help (question mark next to the function) provides a simple web
interface for sending the request (cp., Section 3.1). However, if you like to use
a more convenient reference implementation, browsing to https://localhost:

9906/debug/managePolicies tries to show how a simple policy manager may look
like.

6 The on-line help can be used again to quickly check the policy while developing (cp.,
Section 3.1).

https://localhost:9906/debug/managePolicies
https://localhost:9906/debug/managePolicies


242 Benjamin Kellermann and Immanuel Scholz

Web Browser client PRIME core Application server PRIME core

Client Server

GET URL

GET URL

checkAccess

ask

X-PRIME Header

ask user about sending personal data

send credentials

GET URL + X-PRIME-HANDLE

checkAccess

allow

web page

web page

Fig. 4. Sequence diagram of the communication flow with PRIME.

“deny”, and “ask”. The state “ask” denotes that not enough information has been
provided and the authorization should be started. Most developers using access
control frameworks are only familiar with the two states: “allow” and “deny”.
Usually, the time when authentication checks are done has to be known to the
developed application and some kind of logged-in state is maintained. It is possible
but not encouraged with the PRIME framework to track and maintain a logged-in
state (which usually comes with linkability between individual user transactions).
However the best practice approach here is, to let the policy evaluation decide
directly for each individual transaction. If this is technically feasible, it enables
that a user’s activities become unlinkable, say the browsing for books (remain
anonymous) and the actual ordering (disclosing contact information).

For interpreting the three return values in PHP, a switch environment can be
used. In case of “allow” or “deny”, the server’s output is "Hello World!" or any
error message, respectively. In case of “ask”, the policy evaluation determined
that it cannot decide, yet, whether the user is allowed to access the protected
resource (this is also the case in Figure 4). It needs more information, e. g., a
proof of possession of an anonymous credential. This proof can be triggered
by the server by inserting two HTTP-headers in the response to the client:
“X-PRIME” and “X-PRIME-Protected-Resource”. The first header defines the



Anonymous Credentials in Web Applications 243

address, the client should contact to show his credential, and the second one
states the protected resource under which the policy is stored. The client-side
PRIME core will interpret these headers, trigger the credential proving process
with the client-side PRIME core (“ask user” and “send credential” arrows of
Figure 4 or arrows 5 and 6 of Figure 1), and repeat the HTTP request to the web
server including another HTTP header “X-PRIME-HANDLE”, which contains
a session id. The web application has to pass the session id to the server-side
PRIME core, which evaluates the policy again and now hopefully returns “allow”.

Figure 5 shows the complete PRIME-enabled “Hello World!” application.
Lines 2–4 queries the web service system/checkAccess of the server-side PRIME
core. Lines 5 and 6 reply the easy cases, where access is allowed or denied. Lines 7–
10 return HTTP-headers which causes the client to show the required credentials.

1 <?php

2 switch (fread(fopen("https :// localhost :9906/"

3 ."system/checkAccess?resource=urn:hello"

4 ."&subject=$_SERVER[HTTP_X_PRIME_HANDLE]","r") ,10)){
5 case "allow": echo "Hello␣World!"; break;

6 case "deny": echo "Access␣Denied"; break;

7 case "ask":

8 header("X-PRIME:␣https :// example.org :9906");

9 header("X-PRIME -Protected -Resource:␣urn:hello");

10 break;

11 }?>

Fig. 5. Example source code of the PRIME enabled “Hello World!” application.

With these additional 10 lines of code, the developer has integrated whole
access control and credential verification features of the PRIME core.

4 Credential Issuing

4.1 Running PRIME as Issuer

If one wants to issue credentials, the restricted web services have to be launched
in addition to the ones one has to launch for access control. An appropriate
command line to launch the server could look like:

java -jar prime.jar --gui=false --keystore.password=XYZ \

--webservice.simplepolicy.password=YZX \

--webservice.restricted.password=ZYX

Also, some configuration has to be done to specify for which cryptographic key and
which data categories the service will issue credentials. A reference implementation



244 Benjamin Kellermann and Immanuel Scholz

has been made within the debug web services. Browsing to https://localhost:

9906/debug/configIssuer will provide an easy click-through interface, which
does the necessary configuration for issuing credentials.

4.2 Issuing Credentials

Issuing of credentials is one of the functionalities, built into the PRIME core.
There is no need for developers to do additional programming to offer credential
issuing for end-users. Steps to a successful issue a credential are

1. submitting data to be certified to the issuing service,
2. convincing the service provider about the correctness of the data7, and
3. fetching a credential for this data.

Submitting Data To fetch any credential, the option “Fetch Credential” in
the send personal data dialog can be used.8 Alternatively, the fetching can be
initiated by the menu option “Register Data” in the tray icon.9

After entering and sending the data, a 4-digit number is displayed. This
number is needed in the next step.

Convincing the Issuer During the registration process, a shared secret10 is
stored at the client and the server. A 4-digit hash of this secret is displayed to
the user as described previously. By revealing this hash value, the user proves to
the credential issuer that the data at the server was indeed provided by his client
computer. The 4-digit hash is used here for usability reasons, a longer value or
even the whole secret can be used in other scenarios.

When the credential issuer is convinced, that

– the person is authorized to get a credential for this data (e. g., by verifying
the id-card) and

– that the credential in the server database is the credential from the persons’
computer (by checking if the data stored under the shared secret is correct),11

he approves the credential by calling to the web service restricted/setProven

and informs the user, that his client can fetch it.
A minimalistic sample implementation has been realized within the debug

web services. Browsing to https://localhost:9906/debug/managUnprovenPii

delivers an easy interface which displays all unapproved hashes and personal data
together with a link to approve them.

7 In practice it may often be the case that the issuing party already has the data it
wants to issue. However, the user still has to convince the service provider, that the
data was submitted from his personal device.

8 The send personal data dialog is the dialog that pops up when browsing on a protected
web site with a PRIME-enabled web browser.

9 In this case, the issuing service URL has to be specified manually.
10 Here, the shared secret is a 122 bit long random number.
11 Imagine an attacker, submitting the same information to trick the clerk verifying the

id-card into approving his credential request instead.

https://localhost:9906/debug/configIssuer
https://localhost:9906/debug/configIssuer
https://localhost:9906/debug/managUnprovenPii


Anonymous Credentials in Web Applications 245

Fetching the Credential After approving the request, the user can obtain the
credential via the “Fetch Credential” menu option in the clients tray icon.

5 Conclusion

We showed, that anonymous credentials are easy to handle with the PRIME core.
Most of the features of modern anonymous credential systems were provided
without any additional effort. Obviously, the authentication with the PRIME
core could be implemented in addition or as an alternative to an existing one,
which improves acceptance and ability to integrate PRIME into existing projects.

Our simple example showed a way to present an unlinkable, partially-provable
credential which also supports relational proofs. If access control is bundled at
one point of the application, about 10 lines of code are necessary to replace the
normal authentication.

Acknowledgments. The authors want to thank Mike Bergmann, Sebastian
Clauss, Martin Meinhold, and many others for the development on the PRIME
core. Helpful comments from Rainer Böhme, Sebastian Clauss and Stefan Köpsell
have been incorporated. In addition, we want to thank Jan Camenisch and the
other anonymous reviewers.

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007–2013) under grant
agreement №216483. The information in this document is provided “as is”, and
no guarantee or warranty is given that the information is fit for any particular
purpose. The above referenced consortium members shall have no liability for
damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject
to any liability which is mandatory due to applicable law. Copyright 2009 by TU
Dresden.

References

1. Chaum, D.: Security without identification: Transaction systems to make big brother
obsolete. Commun. ACM 28(10) (1985) 1030–1044

2. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Pfitzmann, B., ed.: EUROCRYPT.
Volume 2045 of Lecture Notes in Computer Science., Springer (2001) 93–118

3. Casassa-Mont, M., Crosta, S., Kriegelstein, T., Sommer, D.: Architecture v2. De-
liverable D14.2.c, PRIME (March 2007) https://www.prime-project.eu/prime_
products/reports/arch/pub_del_D14.2.c_ec_WP14.2_v1_Final.pdf.

4. IBM Research: Identity mixer. http://prime.inf.tu-dresden.de/idemix/

(November 2009)
5. Kellermann, B., Scholz, I., Wahrig, H.: The PRIME developers tutorial. http:

//turrican.inf.tu-dresden.de/doc/ (August 2009)

https://www.prime-project.eu/prime_products/reports/arch/pub_del_D14.2.c_ec_WP14.2_v1_Final.pdf
https://www.prime-project.eu/prime_products/reports/arch/pub_del_D14.2.c_ec_WP14.2_v1_Final.pdf
http://prime.inf.tu-dresden.de/idemix/
http://turrican.inf.tu-dresden.de/doc/
http://turrican.inf.tu-dresden.de/doc/

	1 Introduction
	2 Setup
	2.1 Architectural Overview
	2.2 Running PRIME on Client Side

	3 How to Use PRIME in an Application
	3.1 Launching PRIME as a Developer
	3.2 PRIME enabled ``Hello World!''
	Inserting a Policy
	Modifying the Source Code


	4 Credential Issuing
	4.1 Running PRIME as Issuer
	4.2 Issuing Credentials
	Submitting Data
	Convincing the Issuer
	Fetching the Credential


	5 Conclusion

