Security in Computer Networks

Multilateral Security in Distributed and by Distributed Systems

Transparencies for the Last Part of the Lecture:
Security and Cryptography II

Andreas Pfitzmann
Technische Universität Dresden, Faculty of Computer Science, D-01062 Dresden
Nöthnitzer Str. 46, Room 3071
Phone: +49 351 463-38277, e-mail: pfitza@inf.tu-dresden.de, http://dud.inf.tu-dresden.de/

Protection of the recipient: Broadcast

Equivalence of Encryption Systems and Implicit Addressing

invisible public address <==> asymmetric encryption system
invisible private address <==> symmetric encryption system

Broadcast vs. Queries

broadcast of separate messages to all recipients

everybody can query all messages

Example for message service

"Query and superpose" instead of "broadcast"

re-writable memory cell $=$ implicit address
re-writing $=$ addition $\bmod 2$ (enables to read many cells in one step) channels trivially realizable
Purposes of implicit addresses
Broadcast: Efficiency (evaluation of implicit address should be faster than processing the whole message)
Query and superpose: Medium Access Control; Efficiency (should reduce number of messages to be read)
fixed memory cell $=$ visible implicit address
implementation: fixed query vectors for servers $0 / 1$

Number of addresses linear in the expense (of superposing).
Improvement: Set of re-writable memory cells = implicit address
Message m is stored in a set of a memory cells by choosing a-1 values randomly and choosing the value of the $a^{\text {th }}$ cell such that the sum of all a cells is m.
For overall n memory cells, there are now $2^{n}-1$ usable implicit addresses, but due to overlaps of them, they cannot be used independently.
If collisions occur due to overlap, try retransmit after randomly chosen time intervals. Any set of cells as well as any set of sets of cells can be queried in one step.

Invisible implicit addresses using "query and superpose" (1)

hopping between memory cells = invisible implicit address
Idea: User who wants to use invisible implicit address at time t reads the values from reserved memory cells at time $t-1$.
These values identify the memory cell to be used at time t.
Impl.: • Address owner gives each server s a $P B G_{s}$.

- Each server s replaces at each time step t the content of its reserved memory cell $S_{\text {Adr }}$ with $P B G_{s}(t)$:

$$
S_{A d r}:=P B G_{s}(t)
$$

- User queries via MIXes $\sum_{s} P B G_{s}(t)$. (possible in one step.) user employs $S_{\sum_{s} P B G_{s}(t)}{ }^{s}$ for message. $1 / \swarrow 1$
- Address owner generates $\sum_{s} P B G_{s}(t)$ and reads using "query and superpose" $S_{\sum_{s} P B G_{s}(t)}$ before and after the writing of messages, calculates difference. Improvement: for all his invisible implicit addresses together: $1 / \swarrow 2$ (if $\leq 1 \mathrm{msg}$)

Address is in so far invisible, that at each point of time only a very little fraction of all possible combinations of the cells $S_{\text {Adr }}$ are readable.

Invisible implicit addresses using "query and superpose" (2)

hopping between memory cells = invisible implicit address
can be extended to
hopping between sets of memory cells = invisible implicit address

Fault tolerance (and countering modifying attacks)

What if server (intentionally) does

1. not respond or
2. delivers wrong response?
3. Submit the same query vector to another server.
4. Messages should be authenticated so the user can check their integrity and thereby detect whether at least one server did deliver a wrong response. If so, use a disjoint set of servers or lay traps by sending the same query vector to many servers and checking their responses by comparison.

Protection of the sender

Dummy messages

- don't protect against addressee of meaningful messages
- make the protection of the recipient more inefficient

Unobservability of neighboring lines and stations as well as digital signal regeneration
example: RING-network

Proof of anonymity for a RING access method

Flow of the message frame around the ring

Fault tolerance of the RING-network

Requirement

For each possible error, anonymity has to be guaranteed.

Problem

Anonymity: little global information
Fault tolerance: much global information

Principles

Fault tolerance through weaker anonymity in a single operational mode (anonymity-mode)

Fault tolerance through a special operational mode (fault tolerancemode)

Braided RING

Two RINGs operating if no faults

Reconfiguration of the inner RING if an outer line fails

Reconfiguration of the outer RING if a station fails

Reconfiguration of the outer RING if an outer line fails

Line used

Line not used

Line used to transmit half of the messages

Modifying attacks

modifying attacks at

publish input and output
if dispute: reconfiguration

Superposed sending (DC-network)

Anonymity of the sender
If stations are connected by keys the value of which is completely unknown to the attacker, tapping all lines does not give him any information about the sender.

Three distinct topologies

Reservation scheme

Superposed receiving

Whoever knows the sum of n characters and $n-1$ of these n characters, can calculate the n-th character.
pairwise superposed receiving (reservation scheme: $n=2$)
Two stations send simultaneously.
Each subtracts their characters from the sum to receive the character sent by the other station. ==> Duplex channel in the bandwidth of a simplex channel
global superposed receiving (direct transmission: $n \geq 2$)
Result of a collision is stored, so that if n messages collide, only
$n-1$ have to be sent again.
Collision resolution algorithm using the mean of messages:
$\leq 2^{S}-1$ station addition mod 2^{L}

Pairwise superposed receiving

without superposed receiving

with pairwise superposed receiving

Global superposed receiving

Collision resolution algorithm with mean calculation and superposed receiving

Global superposed receiving (2 messages equal)

Collision resolution algorithm with mean calculation and superposed receiving

Superposition topology for minimal delay

tree of XOR gates to superpose the output of the user stations
tree of repeaters to amplify the output to the user stations

Suitable coding for superposed sending

Analogy between Vernam cipher and superposed sending

$$
K+M=C \Leftrightarrow M=C-K \quad \text { abelian group }
$$

$$
M_{1}+K=O_{1}
$$

$$
\mathrm{M}_{2}-\mathrm{K}=\mathrm{O}_{2}
$$

Proposition:

If stations S_{i} are connected by uniform randomly distributed keys K_{j} which are unknown to the attacker, by observing all the O_{i}, the attacker only finds out $\quad \sum_{i} M_{i}$ about the M_{i}.

Proof:

$m=1$, trivial
step $m-1 \rightarrow m$

Proof of sender anonymity: induction step

Attacker observes $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots \mathrm{O}_{m}$.
For each combination of messages $M^{\prime}{ }_{1}, M^{\prime}{ }_{2}, \ldots M_{m}{ }_{m}$
with $\sum_{i=1}^{m} M^{\prime}{ }_{i}=\sum_{i=1}^{m} O_{i}$ there is exactly one compatible combination of keys : $K^{\prime}:=O_{m}-M^{\prime}{ }_{m}$

The other keys are defined as in the induction assumption, where the output of S_{L} is taken as $O_{L}+K^{\prime}$.

Information-theoretic anonymity in spite of modifying attacks

Problems:

1) The attacker sends messages only to some users. If he gets an answer, the addressee was among these users.
2) To be able to punish a modifying attack at service delivery, corrupted messages have to be investigated. But this may not apply to meaningful messages of users truthful to the protocol.

DC ${ }^{+}$-net to protect the recipient even against modifying attacks:
key between station at station i at time t
i and j at time $t \quad$ broadcast character
$\underset{\text { field }}{\left(\begin{array}{l}\text { Schief- }\end{array}\right.} \quad K_{i j}^{t}=a_{i j}^{t}+\sum_{k=t-s}^{t-1} b_{i j}^{t-k} \bullet C_{i}^{k}$

For practical reasons:
Each station has to send within each s successive points in time a random message and observe, whether the broadcast is "correct".

If $K_{i j}^{t}$ is revealed, one will start with $C_{i}^{t-s}, \ldots, C_{i}^{t-1}$.
If disput then stop revealing. If revealed, distribute new $b_{i j}^{1}, \ldots, b_{i j}^{s}$

Let t-s be the first point in time where $V_{i}^{t-s} \neq V_{j}^{t-s}$.

Protection of the sender: anonymous trap protocol

- Each user can cause investigating the reservation blobs directly after their sending if the sending of his reservation blobs did not work.
- Each user can authorize investigating of his "collision-free" random message, by opening the corresponding reservation blob.

1) The user committing the value must not be able to change it, but he must be able to reveal it.
2) The others should not get any information about the value.

In a "digital" world you can get exactly one property without assumptions, the other then requires a complexity-theoretic assumption.

Example:
Given a prime number p and the prime factors of $p-1$, as well as a generator α of $Z^{*}{ }_{p}$ (multiplicative group mod p). Using y everybody can calculate $\alpha^{y} \bmod p$.

The inverse can not be done efficiently!
$1 ?$
$s \in Z^{*}{ }_{p}$ randomly chosen
(so user cannot compute e such that $s \equiv \alpha^{e}$)
$x:=s^{b} \alpha^{y} \bmod p \quad$ with $0 \leq y \leq p-2$
commit \xrightarrow{x}
open \xrightarrow{y}
$2 ?$
Let 2^{u} be the smallest number that does not divide $p-1$

```
y:= y},\mp@code{,b,\mp@subsup{y}{2}{}}\mathrm{ with }0\leqy\leqp-2 and |\mp@subsup{y}{2}{}|=u-
x:= \alpha}\mp@subsup{}{}{y}\operatorname{mod}
commit }\xrightarrow{}{x
open }\xrightarrow{}{y
```


Blobs based on factoring assumption

Blobs based on asymmetric encryption system

2?
encrypt b with asymmetric encryption system (recall: public encryption key and ciphertext together uniquely determine the plaintext)

- has to be probabilistic - otherwise trying all possible values is easy
- communicating the random number used to probabilistically encrypt b means opening the blob
- computationally unrestricted attackers can calculate b (since they can break any asymmetric encryption system anyway)

Modifying attacks

Modifying attacks at sender anonymity recipient anonymity
 service delivery
 ``` attacker sends message character

\not=0\mathrm{ 0,``` if the others send their message character as well \\ \(\rightarrow\) no transmission of meaningful information}

To be able to punish a modifying attack at service delivery, corrupted messages have to be investigated. But this may not apply to meaningful messages of users truthful to the protocol.

\section*{Checking the behavior of the stations}

To check a station it has to be known:
- All keys with others
- The output of the station
- All the global superposing results received by the station
- At what time the station may send message characters according to the access protocol
(Can be determined using the global superposition results of the last rounds; These results can be calculated using the outputs of all stations.)

compare
known = known to all stations truthful to the protocol

\section*{Modifying attacks in the reservation phase}

Collisions in the reservation phase
- cannot be avoided completely
- therefore they must not be treated as attack

Problem: Attacker \(A\) could await the output of the users truthful to the protocol and than \(A\) could choose his own message so that a collision is generated.

Solution: Each station
1. defines its output using a Blob at first, then
2. awaits the Blobs of all other stations, and finally
3. reveals its own Blob's content.

\section*{Fault tolerance: \(\mathbf{2}\) modes of operation}

\section*{A-mode}
anonymous transmission of messages using
superposed sending

\section*{Fault tolerance: sender-partitioned DC-network}

\section*{Protection of the communication relation: MIX-network}

\section*{Basic functions of a MIX}

\section*{Properties of MIXes}

MIXes should be designed produced operated maintained ...

Messages of the same length buffer
re-encrypt \(\zeta\) batch-wise
change order
Each message processed only once!
inside each batch
between the batches
sym. encryption system only for

asym. encryption system required
for MIXes in the middle
independently

\section*{Possibilities and limits of re-encryption}

Aim: (without dummy traffic)
Communication relation can be revealed only by:
- all other senders and recipients together or
- all MIXes together which were passed through
against the will of the sender or the recipient.

\section*{Conclusions:}
1. Re-encryption: never decryption directly after encryption

Reason: to decrypt the encryption the corresponding key is needed;
\(\rightarrow\) before and after the encoding of the message it is the same
\(\rightarrow\) re-encryption is irrelevant
2. Maximal protection:

MIXes are passed through simultaneously and therefore in the same order

\section*{Maximal protection}

\section*{Pass through MIXes in the same order}

Re-encryption scheme for sender anonymity

indirect re-encryption scheme for sender anonymity
\(M_{n+1}=c_{n+1}(M)\)
\(M_{i}=c_{i}\left(z_{i}, A_{i+1}, M_{i+1}\right)\) for \(i=n, . ., 1 \quad M_{i}=c_{i}\left(k_{i}, A_{i+1}\right) ; k_{i}\left(M_{i+1}\right)\)

\section*{Indirect re-encryption scheme for recipient anonymity}

\section*{Indirect re-encryption scheme for sender and recipient anonymity \\ sender and recipient anonymity}

\section*{Indirect re-encryption scheme for sender and recipient anonymity \\ sender and recipient anonymity}

\section*{Indirect re-encryption scheme maintaining message length}

\(\longleftarrow \quad\) decrypt with \(d_{j} \quad \triangleleft---\) re-encrypt with \(k_{j}\)
\[
\begin{aligned}
H_{m+1} & =[e] \\
H_{j} & =\left[c_{j}\left(k_{j}, A_{j+1}\right)\right], k_{j}\left(H_{j+1}\right) \quad \text { for } j=m, . ., 1
\end{aligned}
\]

Indirect re-encryption scheme maintaining message length for special symmetric encryption systems

«--- re-encrypt with \(k_{j}\)
\[
\text { if } \quad k^{-1}(k(M))=M
\]
and \(k\left(k^{-1}(M)\right)=M\)

\section*{Minimally message expanding \\ re-encryption scheme maintaining message length}

\(\longleftarrow \quad\) encrypt with \(d_{j}\)
\(\leftarrow---\) - re-encrypt with \(k_{j}\)
\[
\begin{aligned}
\text { if } & k^{-1}(k(M))=M \\
\text { and } & k\left(k^{-1}(M)\right)=M
\end{aligned}
\]

\section*{Breaking the direct RSA-implementation of MIXes (1)}

Implementation of MIXes using RSA without redundancy predicate and with contiguous bit strings (David Chaum, 1981) is insecure:

Unlinkability, if many factors \(f\) are possible.
\(2^{b} \cdot 2^{B} \leq n-1\) hold always and normally \(b \ll B\).
If the random bit strings are the most significant bits, it holds
\[
\begin{aligned}
& (z, M)=z \cdot 2^{B}+M \quad \text { and } \\
& (z, M) \cdot f \equiv\left(z \cdot 2^{B}+M\right) \cdot f \equiv z \cdot 2^{B} \cdot f+M \cdot f .
\end{aligned}
\]

\section*{Breaking the direct RSA-implementation of MIXes (2)}

Let the identifiers \(z^{\prime}\) and \(M^{\prime}\) be defined by
\((z, M) \cdot f \quad \equiv z^{*} \cdot 2^{B}+M^{‘} \quad \Rightarrow\)
\(\begin{array}{lll}z^{\prime} 2^{B} \cdot f+M \cdot f & \equiv z^{\top} \cdot 2^{B}+M^{\top} & \Rightarrow \\ 2^{B} \cdot\left(z \cdot f-z^{\top}\right) & \equiv M^{\top}-M \cdot f & \Rightarrow\end{array}\)
\(z \circ f-z^{\star} \quad \equiv\left(M^{‘}-M \cdot f\right) \cdot\left(2^{B}\right)^{-1}\)
If the attacker chooses \(f \leq 2^{b}\), it holds
\(-2^{b}<z \cdot f-z^{c}<2^{2 b}\)
The attacker replaces in (1) \(M\) and \(M^{\text {d }}\) by all output-message pairs of the batch and tests (2).
(2) holds, if \(b \ll B\), very probably only for one pair (P1,P2). P1 is output message to \((z, M)^{c}, \mathrm{P} 2\) to \((z, M)^{c} \cdot f^{c}\).
If (2) holds for several pairs, the attack is repeated with another factor.

\section*{Fault tolerance in MIX-networks (1)}

2 alternative routes via disjoint MIXes

\(\mathrm{MIX}_{\mathrm{i}}\) or \(\mathrm{MIX}_{\mathrm{i}^{\prime \prime}}\) can substitute \(\mathrm{MIX}_{\mathrm{i}}\)

\section*{Fault tolerance in MIX-networks (2)}

In each step, one MIX can be skipped

\section*{Complexity of the basic methods}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
unobservability of neighboring lines and stations as well as digital signal regeneration \\
RING-network
\end{tabular} & DC-network & MIX-network \\
\hline attacker model & physically limited & \begin{tabular}{l}
computationally restricted w.r.t. service delivery \\
computationally restricted \\
- cryptographically strong \\
- well analyzed
\end{tabular} & computationally restricted not even well analyzed asymmetric encryption systems are known which are secure against adaptive active attacks \\
\hline expense per user & \begin{tabular}{l}
\[
\begin{gathered}
\mathrm{O}(n) \\
\left(\geq \frac{n}{2}\right)
\end{gathered}
\] \\
transmission
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
\mathrm{O}(n) \\
\left(\geq \frac{n}{2}\right)
\end{gathered}
\] \\
transmission
\[
O(k \cdot n)
\] \\
key
\end{tabular} & \begin{tabular}{l}
\(\mathrm{O}(k)\), practically: \(\approx 1\) transmission on the last mile \\
... in the core network \(\mathrm{O}\left(k^{2}\right)\), practically: \(\approx k\)
\end{tabular} \\
\hline
\end{tabular}
\(n=\) number of users
k = connectedness key graph of DC-networks respectively number of MIXes

\section*{Encryption in layer models}

In the OSI model it holds:
Layer \(n\) doesn't have to look at Data Units (DUs) of layer \(n+1\) to perform its service. So layer \(n+1\) can deliver \((n+1)\)-DUs encrypted to layer \(n\).

For packet-oriented services, the layer \(n\) typically furnishes the (\(n+1\))-DUs with a \(n\)-header and possibly with an \(n\) trailer, too, and delivers this as \(n\)-DU to layer \(n-1\). This can also be done encrypted again.
and so on.
All encryptions are independent with respect to both the encryption systems and the keys.

\section*{Arranging it into the OSI layers (1)}
\begin{tabular}{|l|}
\hline OSI layers \\
\hline 7 application \\
\hline 6 presentation \\
\hline 5 session \\
\hline 4 transport \\
\hline 3 network \\
\hline 2 data link \\
\hline 1 physical \\
\hline 0 medium \\
\hline
\end{tabular}
user station exchange exchange user station

\section*{Arranging it into the OSI layers (2)}

\section*{Tolerating errors and active attacks}

Problems: series systems w.r.t. availability maintain the anonymity of "honest" users

There are adequate extensions.

Network extension by stages

\section*{Solution for the ISDN: telephone MIXes}

\section*{Aims: ISDN services on ISDN transmission system}

2 independent 64-kbit/s duplex channels on a 144-kbit/s subscriber line hardly any additional delay on established channels establish a channel within 3 s no additional traffic on the long distance network

Network structure

\section*{Solution for the ISDN: telephone MIXes}

\section*{Aims: ISDN services on ISDN transmission system}

2 independent 64-kbit/s duplex channels on a 144-kbit/s subscriber line hardly any additional delay on established channels establish a channel within 3 s no additional traffic on the long distance network

Network structure

\section*{Time-slice channels (1)}

\section*{Time-slice channels (2)}

Connection configuration later (2)

Query and superpose:
- Each station has to query in each time slice (else the anonymity set degenerates)
- Each station should inquiry all its implicit addresses at each query. (possible both for visible and invisible addresses without additional expense)
-> The size of the anonymity set is no longer limited by the transmission capacity on the user line, but only by the addition performance of the message servers.

\section*{Operatorship of the network components}

\section*{user station}

\section*{wish}

End-to-end encryption Implicit addressing MIXes
Message service

Problems here are easier than at switching centers:
1. Network terminations are less complex
2. ... cannot be changed quickly (hardware, no remote maintenance)

MIXes, Servers: technically easier; organizationally w.r.t. confidence more problematic

Superposed sending: technically more expensive; organizationally easier

\section*{Outlook (1)}

Using the network \(\longrightarrow\) transactions between anonymous partners
explicit proof of identity is possible at any time

Protection of traffic data and data on interests requires appropriate network structure \(\longrightarrow\) consider early enough

Networks offering anonymity can be operated in a "trace users mode" without huge losses in performance, the converse is not true!

\section*{Outlook (2)}

Trustworthy data protection in general or only at individual payment for interested persons?
- Concerning traffic data, the latter is technically inefficient.
- The latter has the contrary effect (suspicion).
- Everyone should be able to afford fundamental rights!

\section*{Radio networks (1)}

\section*{Difference to wired networks}
- Bandwidth of transmission remains scarce
- The current place of the user is also to be protected

\section*{Assumptions}
- Mobile user station is always identifiable and locatable if the station sends.
- Mobile user station is not identifiable and locatable if the station only (passively) receives.

\section*{Which measures are applicable?}
+ end-to-end encryption
+ link encryption

- dummy messages, unobservability of neighboring lines and stations as well digital signal regeneration, superposed sending
\(\rightarrow\) all measures to protect traffic data and data on interests have to be handled in the wired part of the communication network
+ MIXes

+ Broadcast the call request in the whole radio network, only then the mobile station answers. After this the transmission proceeds in one radio cell only.
+ Filter + Generation of visible implicit addresses + Restrict the region
+ Keep the user and SIM anonymous towards the mobile station used.

\section*{No movement profiles in radio networks}

GSM/UMTS - cellular mobile networks
- roaming information
in central data bases
- operators of the network can record the information

\section*{Alternative concept}
- Maintenance of the roaming information in a domain of trust
- at home (HPC)
- at trustworthy organizations
- Protection of the communication relationship
 using MIXes

\section*{Electronic Banking}

\section*{Motivation}
- Banking using paper forms - premium version

Customer gets the completely personalized forms from the bank
in which only the value has to be filled in. No signature!

Electronic banking - usual version
Customer gets card and PIN, TAN from his/her bank.

Upcoming
Customer gets chip card from Bank with
or \(\longrightarrow \quad\) key for MAC
- Map exercise of US secret services: observe the citizens of the USSR (1971, Foy 75)

Main part (Everything a little bit more precise)
- Payment system is secure ...

MAC, digital signature
payment system using digital signatures
- Pseudonyms (person identifier \(\leftrightarrow\) role-relationship pseudonyms)

\section*{Security properties of digital payment systems}

\section*{digital \\ (integrity, availability)}

Payment system is secure if
- user can transfer the rights received,
via communication network
immaterial, digital
- user can loose a right only if he is willing to,
- if a user who is willing to pay uniquely denotes another user as recipient, only this entity receives the right,
- user can prove transfers of rights to a third party if necessary (receipt problem), and
- the users cannot increase their rights even if they collaborate, without the committer being identified.

Problem: messages can be copied perfectly
Solution: witness accepts only the first (copy of a) message
person pseudonyms

\section*{Distinction between:}
1. Initial linking between the pseudonym and its holder
2. Linkability due to the use of the pseudonym across different contexts

\section*{Pseudonyms: Initial linking to holder}

\section*{Public pseudonym:}

The linking between pseudonym and its holder may be publicly known from the very beginning.

\section*{Phone number with its owner listed in public directories}

\section*{Initially non-public pseudonym:}

The linking between pseudonym and its holder may be known by certain parties (trustees for identity), but is not public at least initially.
Bank account with bank as trustee for identity, Credit card number ...

\section*{Initially unlinked pseudonym:}

The linking between pseudonym and its holder is - at least initially - not known to anybody (except the holder).
Biometric characteristics; DNA (as long as no registers)

\section*{Pseudonyms: Use across different contexts => partial order}

\(A \rightarrow B\) stands for " \(B\) enables stronger unlinkability than \(A\) "

\section*{Notations: transfer of a signed message from \(X\) to \(Y\)}
functional notation

\section*{signing \\ the message \(M\) : \\ \(s_{A}(M)\)}
\(X \longrightarrow M, s_{A}(M) \longrightarrow Y\)
\begin{tabular}{|l|}
\hline test the \\
signature: \\
\(t_{A}\left(M, s_{A}(M)\right) ?\) \\
\hline
\end{tabular}
graphical notation

\section*{Authenticated anonymous declarations between business partners that can be de-anonymized}
trusted third party \(A\)

trusted third party \(B\)

confirmation

Generalization:
\[
X \rightarrow B_{1} \rightarrow B_{2} \rightarrow \ldots \rightarrow B_{n} \rightarrow Y
\]
\[
B_{1} \rightarrow B_{2}^{c} \rightarrow \ldots \rightarrow B_{m}^{c} \nearrow \quad \text { error / attack tolerance (cf. MIXes) }
\]

\section*{Authenticated anonymous declarations between} business partners that can be de-anonymized
trusted
third party \(A\)

identification
trustees for identities
trusted
third party \(B\)

confirmation

Security for completely anonymous business partners using active trustee who can check the goods

Security for completely anonymous business partners using active trustee who can not check the goods

\section*{Anonymously transferable standard values}

Anonymously transferable standard value digital payment system

\section*{Transformation of the authentication by the witness}

\section*{The next round: \(\mathbf{Y}\) in the role payer to recipient \(\mathbf{Z}\)}

\section*{Signature system for signing blindly}

\section*{One time convertible authentication}

\section*{Recipient}
choose pseudonym
p
(test key of arbitrary sign. system)
Collision-resistant hash function \(\mathbf{h}\)
\[
p, \mathrm{~h}(p)
\]
choose \(\boldsymbol{r} \in_{\mathrm{R}} \mathbf{Z}_{n}{ }^{*}\)
\[
\begin{aligned}
& (p, \mathrm{~h}(p)) \cdot r^{t} \longrightarrow\left((p, \mathrm{~h}(p)) \bullet r^{t}\right)^{s} \\
& (p, \mathrm{~h}(p))^{s} \bullet r \longleftrightarrow
\end{aligned}
\]
multiply with
\[
r^{-1}
\]
get
\[
(p, \mathrm{~h}(p))^{s}
\]

\section*{Secure device: \(1^{\text {st }}\) possibility}

\section*{Secure device: \({ }^{\text {nd }}\) possibility}

\section*{Secure and anonymous digit. payment system with accounts}

\section*{Offline payment system}

\section*{Payment systems with security by Deanonymizability}
\(k \quad\) security parameter
I identity of the entity giving out the banknote
\(r_{i} \quad\) randomly chosen (\(1 \leq i \leq k\))
\(C\) commitment scheme with information theoretic secrecy
blindly signed banknote:
\[
\mathrm{s}_{\text {Bank }}\left(C\left(r_{1}\right), C\left(r_{1} \oplus /\right), C\left(r_{2}\right), C\left(r_{2} \oplus /\right), \ldots, C\left(r_{k}\right), C\left(r_{k} \oplus /\right)\right),
\]
recipient decides, whether he wants to get revealed \(r_{i}\) or \(r_{i} \oplus /\).
(one-time pad preserves anonymity.)

Hand-over to two honest recipients:
probability \(\left(\exists i\right.\) : bank gets to know \(r_{i}\) and \(\left.r_{i} \oplus i\right) \geq 1-e^{-c \cdot k}\)
(original owner identifiable)

\section*{Outlook}
legal certainty vs. liability
online / offline
debit \(=\) pre-paid \(/\) pay-now \(/\) credit
only special software or hardware, too ?
universal means of payment or multifaceted bonus systems ?
one or multiple currencies?
one or multiple systems ?

Personal identifier

Role pseudonyms

\section*{(business-relationship and transaction pseudonyms)}

\section*{Multilateral security in digital payment systems}

Identification in case of fraud using anonymous payment systems

fig.: identification in case of fraud
\(\mathrm{c}, c^{*} \quad\) challenges (with merchant ID)
\(r, r^{*}\) responses
conclusive identification of the costumer is possible using different responses to same digital coin

\section*{Cryptography and the impossibility of its legal regulation}
- Cryptography (you already know)
- Steganography
- Proposals to regulate cryptography
- Technical limits of regulating cryptography
- Secure digital signatures \(\rightarrow\) Secure encryption
- Key Escrow encryption without permanent surveillance \(\rightarrow\) Encryption without Key Escrow
- Symmetric authentication \(\rightarrow\) Encryption
- Multimedia communication \(\rightarrow\) Steganography
- Keys for communication and secret signature keys can be replaced at any time \(\rightarrow\) Key Escrow to backup keys is nonsense
- Proposals to regulate cryptography harm the good guys only

\section*{Steganography}

\section*{Steganography}

\section*{Steganography}

\section*{Steganography: Secrecy of secrecy}

\section*{Steganography}

\section*{Steganography: Watermarking and Fingerprinting}

\section*{Proposals to regulate cryptography ?}
- Would you regulate cryptography to help fight crime ?
- If so: How ?

\section*{Proposals to regulate cryptography!}
- Outlaw encryption
- Outlaw encryption - with the exception of small key lengths
- Outlaw encryption - with the exception of Key Escrow or Key Recovery systems
- Publish public encryption keys only within PKI if corresponding secret key is escrowed
- Obligation to hand over decryption key to law enforcement during legal investigation

\section*{Secure digital signatures —> Secure encryption}

A does not need a certificate for \(\mathrm{C}_{\mathrm{A}}\) issues by CA

\section*{Key Escrow encryption without permanent surveillance}

-> Encryption without Key Escrow

\section*{Key Escrow encryption without permanent surveillance}

employ Key Escrow additionally
to keep your encryption without Key Escrow secret

\section*{Key Escrow encryption without permanent surveillance}

\section*{Key Escrow encryption without permanent surveillance}

if surveillance is not done or even cannot be done retroactively, symmetric encryption alone does the job

\section*{Symmetric authentication \(\rightarrow\) Encryption}

\section*{Sender \(\boldsymbol{A}\)}

Kennt \(k_{A B}\)
Zu übertragen sei Nachricht
\(b_{1}, \ldots b_{n} \quad \operatorname{mit} b_{i} \in\{0,1\}\)
Berechnet

\section*{Empfänger B}

Kennt \(k_{A B}\)
\(\operatorname{MAC}_{1}:=\operatorname{code}\left(k_{A B}, b_{1}\right) \ldots\) MAC \(_{n}:=\operatorname{code}\left(k_{A B}, b_{n}\right)\)
Sei \(a_{1}, \ldots a_{n}\) die bitweise invertierte Nachricht.
Wählt zufällig \(\mathrm{MAC}_{1}{ }_{1} \ldots \mathrm{MAC}_{n}{ }_{n}\) mit
form
\(\operatorname{MAC}_{1} \neq \operatorname{code}\left(k_{A B}, a_{1}\right) \ldots \mathrm{MAC}_{n}^{\prime} \neq \operatorname{code}\left(k_{A B}, a_{n}\right)\)
Überträgt (die Mengenklammern bedeuten „zufällige Reihenfolge")
\[
\left\{\left(b_{1}, \mathrm{MAC}_{1}\right),\left(a_{1}, \mathrm{MAC}_{1}\right)\right\} \ldots
\]
\[
\left\{\left(b_{n}, \mathrm{MAC}_{n}\right),\left(a_{n}, \mathrm{MAC}_{n}^{\prime}\right)\right\} \quad \square \text { Probiert, ob }
\]
intermingle
\(\left\{\mathrm{MAC}_{1}=\operatorname{code}\left(k_{A B}, b_{1}\right)\right.\) oder
\(\left.\mathrm{MAC}_{1}=\operatorname{code}\left(k_{A B}, a_{1}\right)\right\}\)
und empfängt den passenden Wert \(b_{1}\)
separate
probiert, ob
\(\left\{\mathrm{MAC}_{n}=\operatorname{code}\left(k_{A B}, b_{n}\right)\right.\) oder
\(\left.\mathrm{MAC}_{n}=\operatorname{code}\left(k_{A B}, a_{n}\right)\right\}\)
und empfängt den passenden Wert \(b_{h}\)

\section*{Symmetric authentication \(\rightarrow\) Encryption}
\begin{tabular}{|c|c|}
\hline Sender \(\boldsymbol{A}\) & Empfänger B \\
\hline Kennt \(k_{A B}\) & Kennt \(k_{A B}\) \\
\hline \begin{tabular}{l}
Zu übertragen sei Nachricht \\
\(b_{1}, \ldots b_{n} \quad \operatorname{mit} b_{i} \in\{0,1\}\)
\end{tabular} & \\
\hline Berechnet
\[
\operatorname{MAC}_{1}:=\operatorname{code}\left(k_{A B}, b_{1}\right) \ldots \operatorname{MAC}_{n}:=\operatorname{code}\left(k_{A B}, b_{n}\right)
\] & \\
\hline Überträgt
\[
\left(1, b_{1}, \mathrm{MAC}_{1}\right), \ldots\left(n, b_{n}, \mathrm{MAC}_{n}\right)
\] & \\
\hline Komplementgenerierer & falsely authenticated messages \\
\hline \begin{tabular}{l}
Hört die Nachricht \(b_{1}, \ldots b_{n}\) ab. \\
Bildet \(a_{1}, \ldots a_{n}\), die bitweise invertierte Nachricht Wählt zufällig \(\mathrm{MAC}_{1} \ldots \mathrm{MAC}_{n}\) und mischt in den Nachrichtenstrom von Sender A an die passenden Stellen
\[
\left(1, a_{1}, \mathrm{MAC}_{1}\right), \ldots\left(n, a_{n}, \mathrm{MAC}_{n}^{\prime}\right)
\]
\end{tabular} & \begin{tabular}{l}
form and intermingle without knowing the key \\
separate
\end{tabular} \\
\hline Überträgt die Mischung & normales Authentikationsprotokoll \\
\hline \begin{tabular}{l}
Abhörer \\
kann \(a_{i}\) und \(b_{i}\) nicht unterscheiden
\end{tabular} & Ignoriert Nachrichten mit falscher Authe gibt die übrigbleibenden weiter empfangen wird mit größter Wahrschein \(b_{1}, \ldots b_{n}\) \\
\hline
\end{tabular}

Key exchange for steganography ?
Exchanging keys outside the communication network is easy for small closed groups, in particular it is easy for criminals and terrorists.

Large open groups need a method of key exchange which works without transmitting suspicious messages within the communication network - asymmetric encryption cannot be used directly for key exchange.

Solution:

\section*{Diffie-Hellman Public-Key Agreement}

Uses public keys of a commonly used digital signature systems (DSS, developed and standardized by NSA and NIST, USA)

\section*{Key exchange without message exchange}

Diffie-Hellman Public-Key Agreement
secret: \(x\) y
public: \(g^{x} \quad g^{y}\)
\[
\left(g^{y}\right)^{x}=g^{y x}=g^{x y}=\left(g^{x}\right)^{y}
\]

\section*{Key exchange for steganography!}

\section*{Diffie-Hellman Public-Key Agreement}

\[
\left(g^{y}\right)^{x}=g^{y x}=g^{x y}=\left(g^{x}\right)^{y}
\]

\section*{Summary}

Digital Signatures

Key Escrow without permanent surveillance

Multimedia communication

\section*{Encryption}

Key exchange, multiple encryption

Steganography

\section*{Cryptoregulation ignores technical constraints}

\section*{Loosing secret keys}

\section*{Key Recovery - for which keys ?}
\begin{tabular}{l|l|l|}
& \multicolumn{2}{|c|}{ protecting } \\
& communication & long-term storage \\
\hline Encryption & Key & Key \\
& Recovery & Recovery \\
\hline \multirow{3}{*}{\begin{tabular}{l}
symmetric \\
Authen- (MACs) \\
tication
\end{tabular}} & functionally & useful \\
\begin{tabular}{lll}
asymmetric \\
(dig. signature)
\end{tabular} & but additional security risk \\
\hline
\end{tabular}

\section*{Proposals to regulate cryptography harm the good guys only}
- Outlaw encryption
- Outlaw encryption - with the exception of small key lengths
- Outlaw encryption - with the exception of Key Escrow or Key Recovery systems
- Publish public encryption keys only within PKI if corresponding secret key is escrowed
- Obligation to hand over decryption key to law enforcement during legal investigation
> Steganography
> In addition steganography
> Use Key Escrow or Key Recovery system for bootstrap
\(>\) Run PKI for your public encryption keys yourself
\(>\) Calculate one-timepad accordingly

\section*{(Im-)Possibility to regulate anonymous/pseudonymous communication}
- Explicit techniques (you already know the theory)
- Workarounds

\section*{Anon-Proxies}

MIXes
Cascade: AN.ON P2P: TOR

All this exists abroad without regulation - as long as we do not have a global home policy

But even domestic:
Public phones,
Prepaid phones, open unprotected WLANs, insecure Bluetooth mobile phones,

Data retention is nearly nonsense,
since „criminals" will use workarounds, cf. above```

