
1

Security in Computer Networks
Multilateral Security in Distributed and by Distributed Systems

Transparencies for the Lecture:

Security and Cryptography I
(and the beginning of Security and Cryptography II)

Andreas Pfitzmann
Technische Universität Dresden, Faculty of Computer Science, D-01062 Dresden

Nöthnitzer Str. 46, Room 3071
Phone: +49 351 463-38277, e-mail: pfitza@inf.tu-dresden.de, http://dud.inf.tu-dresden.de/

2

Field of Specialization: Security and Privacy

3

Areas of Teaching and Research

•  Multilateral security, in particular security by distributed
systems

•  Privacy Enhancing Technologies (PETs)
•  Cryptography
•  Steganography
•  Multimedia-Forensics
•  Information- and coding theory

•  Anonymous access to the web (project: AN.ON, JAP)
•  Identity management (projects: PRIME, PrimeLife, FIDIS)
•  SSONET and succeeding activities
•  Steganography (project: CRYSTAL)

4

Aims of Teaching at Universities

Science shall clarify
 How something is.

But additionally, and even more important
 Why it is such
or
 How could it be
 (and sometimes, how should it be).

“Eternal truths” (i.e., knowledge of long-lasting
relevance) should make up more than 90% of
the teaching and learning effort at universities.

5

General Aims of Education in IT-security (sorted by priorities)

1.  Education to honesty and a realistic self-assessment
2.  Encouraging realistic assessment of others, e.g., other

persons, companies, organizations
3. Ability to gather security and data protection

requirements
•  Realistic protection goals
•  Realistic attacker models / trust models

4. Validation and verification, including their practical and
theoretical limits

5. Security and data protection mechanisms
•  Know and understand as well as
•  Being able to develop

In short: Honest IT security experts with their
own opinion and personal strength.

6

General Aims of Education in IT-security (sorted by priorities)

1.  Education to honesty and a realistic self-assessment
2.  Encouraging realistic assessment of others, e.g. other

persons, companies, organizations
3. Ability to gather security and data protection

requirements
•  Realistic protection goals
•  Realistic attacker models / trust models

4. Validation and verification, including their practical and
theoretical limits

5. Security and data protection mechanisms
•  Know and understand as well as
•  Being able to develop

How to achieve ?

As teacher, you should make clear
•  your strengths and weaknesses as well as
•  your limits.

Oral examinations:
•  Wrong answers are much worse than “I do not

know”.
•  Possibility to explicitly exclude some topics at the

very start of the examination (if less than 25% of
each course, no downgrading of the mark given).

•  Offer to start with a favourite topic of the
examined person.

•  Examining into depth until knowledge ends – be it
of the examiner or of the examined person.

7

General Aims of Education in IT-security (sorted by priorities)

1.  Education to honesty and a realistic self-assessment
2.  Encouraging realistic assessment of others, e.g., other

persons, companies, organizations
3. Ability to gather security and data protection

requirements
•  Realistic protection goals
•  Realistic attacker models / trust models

4. Validation and verification, including their practical and
theoretical limits

5. Security and data protection mechanisms
•  Know and understand as well as
•  Being able to develop

How to achieve ?

Tell, discuss, and evaluate case examples and
anecdotes taken from first hand experience.

8

General Aims of Education in IT-security (sorted by priorities)

1.  Education to honesty and a realistic self-assessment
2.  Encouraging realistic assessment of others, e.g., other

persons, companies, organizations
3. Ability to gather security and data protection

requirements
•  Realistic protection goals
•  Realistic attacker models / trust models

4. Validation and verification, including their practical and
theoretical limits

5. Security and data protection mechanisms
•  Know and understand as well as
•  Being able to develop

How to achieve ?

Tell, discuss, and evaluate case examples (and
anecdotes) taken from first hand experience.

Students should develop scenarios and discuss
them with each other.

9

General Aims of Education in IT-security (sorted by priorities)

1.  Education to honesty and a realistic self-assessment
2.  Encouraging realistic assessment of others, e.g., other

persons, companies, organizations
3. Ability to gather security and data protection

requirements
•  Realistic protection goals
•  Realistic attacker models / trust models

4. Validation and verification, including their practical and
theoretical limits

5. Security and data protection mechanisms
•  Know and understand as well as
•  Being able to develop

How to achieve ?

Work on case examples and discuss them.

Anecdotes!

10

General Aims of Education in IT-security (sorted by priorities)

1.  Education to honesty and a realistic self-assessment
2.  Encouraging realistic assessment of others, e.g., other

persons, companies, organizations
3. Ability to gather security and data protection

requirements
•  Realistic protection goals
•  Realistic attacker models / trust models

4. Validation and verification, including their practical and
theoretical limits

5. Security and data protection mechanisms
•  Know and understand as well as
•  Being able to develop

How to achieve ?

Whatever students can discover by themselves in
exercises should not be taught in lectures.

11

Offers by the Chair of Privacy and Data Security

•  Interactions between IT-systems and society, e.g.,
conflicting legitimate interests of different actors, privacy
problems, vulnerabilities ...

•  Understand fundamental security weaknesses of today’s IT-
systems

•  Understand what Multilateral security means, how it can be
characterized and achieved

•  Deepened knowledge of the important tools to enable security
in distributed systems: cryptography and steganography

•  Deepened knowledge in error-free transmission and
playback

•  Basic knowledge in fault tolerance
•  Considerations in building systems: expenses vs.

performance vs. security
•  Basic knowledge in the relevant legal regulations

12

Aims of Education: Offers by other chairs

•  Deepened knowledge security in operating systems

•  Verification of OS kernels

•  Deepened knowledge in fault tolerance

13

Table of Contents (1)

1 Introduction
 1.1 What are computer networks (open distributed systems) ?
 1.2 What does security mean?
 1.2.1 What has to be protected?
 1.2.2 Protection against whom?
 1.2.3 How can you provide for security?
 1.2.4 Protection measures – an overview
 1.2.5 Attacker model
 1.3 What does security in computer networks mean?

2 Security in single computers and its limits
 2.1 Physical security
 2.1.1 What can you expect – at best?
 2.1.2 Development of protection measures
 2.1.3 A negative example: Smart cards
 2.1.4 Reasonable assumptions on physical security
 2.2 Protecting isolated computers against unauthorized access and computer viruses
 2.2.1 Identification
 2.2.2 Admission control
 2.2.3 Access control
 2.2.4 Limitation of the threat “computer virus” to “transitive Trojan horse”
 2.2.5 Remaining problems

14

Table of Contents (2)

3 Cryptographic basics

4 Communication networks providing data protection guarantees

5 Digital payment systems and credentials as generalization

6 Summary and outlook

15

1

bank

content provider

4

3

example. monitoring of patients, transmission of moving pictures during an
 operation

5 6

Why are legal provisions (for security and data protection) not enough ?

interceptor"

possible
attackers!

telephone exchange"
•  operator"
•  manufacturer (Trojan horse)"
•  employee"

network termination"

radio"

television"

videophone"

phone"

internet"

2 participant 2

Part of a Computer Network

16

1833 First electromagnetic telegraph
1858 First cable link between Europe and North America
1876 Phone operating across a 8,5 km long test track
1881 First regional switched phone network
1900 Beginning of wireless telegraphy
1906 Introduction of subscriber trunk dialing in Germany, realized by

 two-motion selector, i.e., the first fully automatic telephone exchange
 through electro-mechanics

1928 Introduction of a telephone service Germany-USA, via radio
1949 First working von-Neumann-computer
1956 First transatlantic telephone line
1960 First communications satellite
1967 The datex network of the German Post starts operation,

 i.e., the first communication network realized particularly for computer
 communication (computer network of the first type). The transmission was
 digital, the switching by computers (computer network of the second type).

1977 Introduction of the electronic dialing system (EWS) for telephone
 through the German Post, i.e., the first telephone switch implemented by
 computer (computer network of the second type), but still analogue transmission

History of Communication Networks (1)

17

1981 First personal computer (PC) of the computer family (IBM PC), which is
 widely used in private households

1982 investments in phone network transmission systems are
 increasingly in digital technology

1985 Investments in telephone switches are increasingly in
 computer-controlled technology. Now transmission is no longer analogue,
 but digital signals are switched and transmitted (completed 1998 in Germany)

1988 Start-up of the ISDN (Integrated Services Digital Network)
1989 First pocket PC: Atari Portfolio; so the computer gets personal in the narrower

 sense and mobile
1993 Cellular phone networks are becoming a mass communication service
1994 www commercialization of the Internet
2000 WAP-capable mobiles for 77 € without mandatory subscription to services
2003 with IEEE 802.11b, WLAN (Wireless Local Area Network) and

 Bluetooth WPAN (Wireless Personal Area Network) find mass distribution
2005 VoIP (Voice over IP) is becoming a mass communication service

History of Communication Networks (2)

18

Important Terms

computers interconnected by communication network
 = computer network (of the first type)

computers providing switching in communication network
 = computer network (of the second type)

distributed system
 spatial
 control and implementation structure

open system ≠ public system ≠ open source system

service integrated system

digital system

19 Development of the fixed communication networks of the
German Post

 services

television
view data
TELEBOX
data transmission
TELEFAX
TEMEX

Telex
Teletex
DATEX-L
DATEX-P

videophone
video conference

radio broadcasting
television
videotext

networks networks networks networks
 1986 starting 1988 starting 1990 starting 1992

phone
network

integrated
text- and

data
network

BIGFON

ISDN

video con-
ference
network

broad-
band
ISDN integrated

broadband
network

communal
aerial

installations

broadband
cable

network

broadband
cable

network

switched
networks broadcast networks

20

Threats and corresponding protection goals

threats:

1) unauthorized access to information

2) unauthorized modification of information

3) unauthorized withholding of
 information or resources

protection goals:

confidentiality

integrity

availability

example: medical information system

computer company receives medical files

undetected change of medication

detected failure of system
for authorized
users

≥ total
correctness

≅ partial correctness

no classification, but pragmatically useful
example: unauthorized modification of a program

1) cannot be detected, but can be prevented; cannot be reversed
2)+3) cannot be prevented, but can be detected; can be reversed

21

Definitions of the protection goals

confidentiality

 Only authorized users get the information.

integrity

 Information are correct, complete, and current
 or this is detectably not the case.

availability

 Information and resources are accessible where and
 when the authorized user needs them.

- subsume: data, programs, hardware structure

- it has to be clear, who is authorized to do what in which situation

- it can only refer to the inside of a system

22

Transitive propagation of errors and attacks

symbol explanation

computer

program

A used B to
design C

machine X exe-
cutes program Y

Y

X

A

B C

transitive
propagation of “errors”

23

Trojan horse universal

universal
commands

Trojan horse

write access

unauthorized
disclosure of
information

unauthorized
modification
of information

unauthorized
withholding of
information or
resources

24

Protection against whom ?

Laws and forces of nature
 - components are growing old
 - excess voltage (lightning, EMP)
 - voltage loss
 - flooding (storm tide, break of water pipe)
 - change of temperature ...

Human beings
 - outsider
 - user of the system
 - operator of the system
 - service and maintenance
 - producer of the system
 - designer of the system
 - producer of the tools to design and produce
 - designer of the tools to design and produce
 - producer of the tools to design and produce
 the tools to design and produce
 - designer ...

fault
tolerance

Trojan horse
 • universal
 • transitive

includes user,
 operator,
 service and maintenance ... of the system used

25

Which protection measures against which attacker ?

Schutz bzgl.
Schutz vor
Entwerfer und Produzent
der Entwurfs- und
Produktionshilfsmittel
Entwerfer des Systems
Produzenten des Systems
Wartungsdienst

Betreiber des Systems

physischen Zugriff
beschränken,
logischen Zugriff
beschränken und
protokollieren

Benutzer des Systems

Außenstehende

Erwünschtes
leisten

Unerwünschtes
verhindern

physischen und logischen Zugriff beschränken

physisch vom System, kryptographisch von
den Daten fernhalten

Zwischensprachen; Zwischenergebnisse, die
unabhängig analysiert werden

wie oben + mehrere unabhängige Entwerfer

unabhängige Analysen der Produkte
Kontrolle wie bei neuem Produkt, s. o.

protection concerning
protection against

to achieve
the intended

to prevent
the unintended

designer and producer
of the tools to design
and produce

designer of the system

producer of the system

service and maintenance

operator of the system

user of the system

outsiders

physical and logical restriction of access
protect the system physically and protect the

data cryptographically from outsiders

restrict physical
access,
restrict and log
logical access

intermediate languages and intermediate
results, which are analyzed independently

independent analysis of the product
see above + several independent designers

control as if a new product, see above

26

protection concerning
protection against

to achieve
the intended

to prevent
the unintended

designer and producer
of the tools to design
and produce

designer of the system
producer of the system
service and maintenance

user of the system

outsiders

unobservability, anonymity, unlinkability:
avoid the ability to gather “unnecessary data”

physical and logical restriction of access
protect the system physically and protect data

cryptographically from outsiders

restrict physical
access,
restrict and log
logical access

intermediate languages and intermediate results,
which are analyzed independently

independent analysis of the product
see above + several independent designers

control as if a new product, see above

operator of the system

Which protection measures against which attacker ?

 physical distribution and redundance

27
Considered maximal strength of the attacker

It‘s not possible to protect against an omnipotent attacker.
–  roles of the attacker (outsider, user, operator, service and

maintenance, producer, designer …), also combined
–  area of physical control of the attacker
–  behavior of the attacker

•  passive / active
•  observing / modifying (with regard to the agreed rules)

–  stupid / intelligent
•  computing capacity:

–  not restricted: computationally unrestricted
–  restricted: computationally restricted

time!

money!

28

Observing vs. modifying attacker

area of physical control
of the attacker

area of physical control
of the attacker

IT-system
under consideration

 IT-system
under consideration

world world

observing attacker modifying attacker

acting according to
the agreed rules

possibly breaking
the agreed rules

29
Strength of the attacker (model)

Stronger means:
–  set of roles of A ⊃ set of roles of B,
–  area of physical control of A ⊃ area of physical control of B,
–  behavior of the attacker

•  active is stronger than passive
•  modifying is stronger than observing

–  intelligent is stronger than stupid
•  computing capacity: not restricted is stronger than restricted

–  more money means stronger
–  more time means stronger

30

Security in computer networks

confidentiality
•  message content is confidential
•  sender / recipient anonymous

integrity
•  detect forgery
•  recipient can prove transmission
•  sender can prove transmission
•  ensure payment for service

availability
•  enable communication

• time

• place

end-to-end encryption
mechanisms to protect traffic data

authentication system(s)
sign messages
receipt
during service by digital payment
systems

diverse networks;
fair sharing of resources

31

Multilateral security

Security with minimal assumptions about others

•  Each party has its particular protection goals.

•  Each party can formulate its protection goals.

•  Security conflicts are recognized and
compromises negotiated.

•  Each party can enforce its protection goals
within the agreed compromise.

32

Multilateral security (2nd version)

Security with minimal assumptions about others

•  Each party has its particular goals.

•  Each party can formulate its protection goals.

•  Security conflicts are recognized and
compromises negotiated.

•  Each party can enforce its protection goals
within the agreed compromise.

33

Multilateral security (3rd version)

Security with minimal assumptions about others

•  Each party has its particular goals.

•  Each party can formulate its protection goals.

•  Security conflicts are recognized and
compromises negotiated.

•  Each party can enforce its protection goals within
the agreed compromise. As far as limitations of this
cannot be avoided, they equally apply to all parties.

34

Protection Goals: Sorting

35

Protection Goals: Definitions

Confidentiality ensures that nobody apart from the communicants can discover the content of the
communication. "

Hiding ensures the confidentiality of the transfer of confidential user data. This means that nobody
apart from the communicants can discover the existence of confidential communication."

Anonymity ensures that a user can use a resource or service without disclosing his/her identity.
Not even the communicants can discover the identity of each other."

Unobservability ensures that a user can use a resource or service without others being able to
observe that the resource or service is being used. Parties not involved in the communication can
observe neither the sending nor the receiving of messages."

Integrity ensures that modifications of communicated content (including the senderʼs name, if one
is provided) are detected by the recipient(s)."

Accountability ensures that sender and recipients of information cannot successfully deny having
sent or received the information. This means that communication takes place in a provable way."

Availability ensures that communicated messages are available when the user wants to use them."

Reachability ensures that a peer entity (user, machine, etc.) either can or cannot be contacted
depending on user interests."

Legal enforceability ensures that a user can be held liable to fulfill his/her legal responsibilities
within a reasonable period of time."

36

Correlations between protection goals

weakens –

–

implies strengthens +

+

+

37

Correlations between protection goals

weakens –

–

implies strengthens +

+

+

Transitive closure to be added

38

Correlations between protection goals, two added

weakens –

–

implies strengthens +

+

+

+

+

39

Physical security assumptions

Each technical security measure needs a physical “anchoring”
in a part of the system which the attacker has neither read
access nor modifying access to.

 Range from “computer centre X” to “smart card Y”

What can be expected at best ?
Availability of a locally concentrated part of the system cannot
be provided against realistic attackers

 → physically distributed system
… hope the attacker cannot be at many places at the same time.

Distribution makes confidentiality and integrity more difficult.
But physical measures concerning confidentiality and integrity
are more efficient: Protection against all realistic attackers
seems feasible. If so, physical distribution is quite ok.

40

Tamper-resistant casings

Interference: detect
 judge

Attack: delay
 delete data (etc.)

Possibility: several layers, shielding

41

Shell-shaped arrangement of the five basic functions

delay (e.g. hard material),
detect (e.g. sensors for vibration or pressure)

shield,
judge

delete

42

Tamper-resistant casings

Interference: detect
 judge

Attack: delay
 delete data (etc.)

Possibility: several layers, shielding

Problem: validation ... credibility

Negative example: smart cards
•  no detection (battery missing etc.)
•  shielding difficult (card is thin and flexible)
•  no deletion of data intended, even when power supplied

43

Golden rule

Correspondence between organizational and
IT structures

44

Identification of human beings by IT-systems

What one is

hand geometry
finger print
picture
hand-written signature
retina-pattern
voice
typing characteristics

paper document
metal key
magnetic-strip card
smart card (chip card)
calculator

password, passphrase
answers to questions
calculation results for numbers

has

knows

?

ID-card

45

Identification of IT-systems by human beings

What it is
casing
seal, hologram
pollution

knows
password
answers to questions
calculation results for numbers

Where it stands

?

46

Identification of IT-systems by IT-systems

?

What it knows

Wiring from where

password
answers to questions
calculation results for numbers
cryptography

47

Admission and access control

Admission control communicate with authorized partners only

user
process

•
•

reference monitor

check
authorization;
log author
and operation

data,
programs

Access control subject can only exercise operations on objects
 if authorized.

before access
to data or
programs

48

Computer virus vs. transitive Trojan horse

No computer viruses, only transitive Trojan horses!

program 1

computer virus

program 1

program 2

program 2

unnecessary write access,
e.g. for computer game

Infection

necessary write access,
e.g. for compiler
or editor

transitive
Trojan horse

Limit spread of attack by as little privileges as possible:
Don‘t grant unnecessary access rights!

Access control

49

2. Undecidable if program is Trojan horse

Better be too careful!

3. Even known computer viruses are not efficiently identifiable
 self-modification virus scanner

4. Same for: Trojan horses

5. Damage concerning data is not ascertainable afterwards
 function inflicting damage could modify itself

Basic facts about Computer viruses and Trojan horses

Other measures fail:

1. Undecidable if program is a computer virus
 proof (indirect) assumption: decide (•)

 program counter_example
 if decide (counter_example) then no_virus_functionality
 else virus_functionality

50

Further problems

1.  Specify exactly what IT system is to do and what it is not to do.

2.  Prove total correctness of implementation.

3.  Are all covert channels identified? ?

 ?

 today ?

51

Golden Rule

Design and realize IT system as distributed system, such
that a limited number of attacking computers cannot
inflict significant damage.

52

Distributed System

Aspects of distribution

physical distribution
distributed control and implementation structure

distributed system:

 no entity has a global view on the system

53

Security in distributed systems

Trustworthy terminals

Trustworthy only to user
 to others as well

Ability to communicate

Availability by redundancy and diversity

Cryptography

Confidentiality by encryption
Integrity by message authentication codes (MACs) or digital signatures

54

Availability

Infrastructure with the least possible complexity of design

Connection to completely diverse networks
•  different frequency bands in radio networks
•  redundant wiring and diverse routing in fixed networks

Avoid bottlenecks of diversity
•  e.g. radio network needs same local exchange as fixed

network,
•  for all subscriber links, there is only one transmission point to

the long distance network

55

Basics of Cryptology

Achievable protection goals:
confidentiality, called concealment
 integrity (= no undetected unauthorized modification of
information), called authentication

Unachievable by cryptography:
availability – at least not against strong attackers

56

Symmetric encryption system

key
generation

encryption

Opaque box with lock; 2 identical keys

decryption k(x)
ciphertext

secret key

k

k

random
number

x x
=k -1(k(x))

more detailed
notation

r

gen

k:=gen(r)

dec enc S
S:=enc(k,x) x:=dec(k,S)=dec(k,enc(k,x))

NSA: Bad Aibling
 ...

Law enforcement:
wiretapping interface

local computer
HW: no side-channels
operating system
Windows 95/98/ME/CE/
XP Home E., MacOS
9.x: all programs

Domain of trust Domain of trust

Area of attack

secret area

plaintext plaintext

57

Example: Vernam cipher (=one-time pad)

Schlüssel-
generie-
rung

Ver-
schlüsse-
lung

Ent-
schlüsse-
lung

k(x)
ciphertext

k

k

random
number

plaintext plaintext
x

=k -1(k(x))

0 1

1 0

0 0

1 1

0 0

1 1

0 1

1 0

+ +
0 1

secret area

secret key

x

Opaque box with lock; 2 identical keys

58

Key exchange using symmetric encryption systems

key exchange centers
X

kAZ(k3) kBZ(k3)

+ k3

Z

participant A participant B

kAX(k1) kBX(k1)

key k = k1

k(messages)

NSA:
Key Escrow
Key Recovery Y

kAY(k2) kBY(k2)

+ k2

59

Sym. encryption system: Domain of trust key generation

key
generation

encryption decryption k(x)
ciphertext

secret key

k

k

random number

plaintext plaintext
x x

=k -1(k(x))

Domain of trust Domain of trust

Area of attack

secret area

Domain of trust:
encrypter,
decrypter, or
key exchange
center

60

Asymmetric encryption system

key
generation

encryption decryption c(x)
ciphertext

encryption key,
publicly known

c

d

random
number

plaintext plaintext
x x

=d(c(x))

secret area

random
number '

decryption key,
kept secret

Opaque box with spring lock; 1 key

Domain of trust

Domain of trust

Area of attack

more detailed
notation

r

gen

(c,d):=gen(r)

dec enc S
S:=enc(c,x,r ') x:=dec(d,S)=dec(d,enc(c,x,r '))

r '

61

Key distribution using asymmetric encryption systems

public-key register R

1.
 A registers his public
 encryption key cA
 (possibly
 anonymously).

participant A participant B

cA(message to A)

 3.
B gets the public encryption

key cA of A from R,
certified by

R‘s signature.
2.
B asks the key register R
for the public encryption
key of A.

62

Symmetric authentication system

key
generation

encode

Show-case with lock; 2 identical keys

test:
MAC =
k(x) ?

x, k(x)

plaintext with
authenticator

k

k

random
number

plaintext
x x,

secret area

“pass” or “fail” =:MAC
(message
authentication
code)

more detailed
notation

r

gen

k:=gen(r)

code

MAC:=code(k,x) MAC = code(k,x)
?

Domain of trust Domain of trust

Area of attack

secret key

plaintext and
test result

63

Digital signature system

key
generation

test sign x, s(x)

plaintext
with signature

key for testing of
signature;
publicly known

t

s

random
number

plaintext
plaintext with signature
and test result

x, s(x), x

secret area

random
number '

key for signing;
kept secret

Show-case with lock; 1 key

“pass” or
“fail”

∈{0,1}k

∈{0,1}j

∈{0,1}*
 ∈{0,1}* ∈{0,1}l

011001011

Domain of trust
(no confidentiality needed)

domain of trust

area of attack

more detailed
notation

r

gen

(t,s):=gen(r)

sign test
x,Sig test(t,x,Sig) ∈

{pass, fail}
Sig:=sign(s,x,r '))

r '

x,Sig,
“pass” or “fail”

64

Key distribution using digital signature systems

public-key register R

1.
A registers tA the key for
testing his signature
(possibly anonymously).

participant A participant B

message from A, sA(message from A)

 3.
B receives key tA for testing

the signature of A
from R, certified by

the signature
of R.

2.
B requests the key for
testing the signature of
A from key register R.

65

r1"
⊕ r2"
⊕ r3"

…"
⊕ rn!

 r " gen"

gfjjbz

Key generation

66

Comments on key exchange

Whom are keys assigned to?
1. individual participants asymmetric systems
2. pair relations symmetric systems
3. groups –

How many keys have to be exchanged?
n participants
asymmetric systems n per system
symmetric systems n • (n-1)

When are keys generated and exchanged?

Security of key exchange limits security available by
cryptography:

execute several initial key exchanges

67

Goal/success of attack

a) key (total break)

b) procedure equivalent to key (universal break)

c) individual messages,

e.g. especially for authentication systems
c1) one selected message (selective break)
c2) any message (existential break)

68

Types of attack

a) passive
a1) ciphertext-only attack
a2) known-plaintext attack

b) active
(according to encryption system; asym.: either b1 or b2;

 sym.: b1 or b2)
b1) signature system: plaintext → ciphertext (signature)

(chosen-plaintext attack)
b2) encryption system: ciphertext → plaintext

(chosen-ciphertext attack)
adaptivity

not adaptive
adaptive

criterion: action permission
 passive attacker ≠ observing attacker

 active attacker ≠ modifying attacker

severity

69

Basic facts about “cryptographically strong” (1)

1) using of keys of constant length l :
–  attacker algorithm can always try out all 2l keys

(breaks asym. encryption systems and sym. systems in known-plaintext attack).
–  requires an exponential number of operations

(too much effort for l > 100).
 → the best that the designer of encryption systems can hope for.

2) complexity theory:
–  mainly delivers asymptotic results
–  mainly deals with “worst-case”-complexity

 → useless for security; same for “average-case”-complexity.
 goal: problem is supposed to be difficult almost everywhere, i.e.
except for an infinitesimal fraction of cases.
–  security parameter l (more general than key length; practically useful)

–  if l → ∞, then probability of breaking → 0.

–  hope: slow fast

If no security against computationally unrestricted attacker:

70

Basic facts about “cryptographically strong” (2)

3) 2 classes of complexity:
 en-/decryption: easy = polynomial in l
breaking: hard = not polynomial in l ≈ exponential in l
Why?
 a) harder than exponential is impossible, see 1).
 b) self-contained: substituting polynomials in polynomials gives polynomials.
 c) reasonable models of calculation (Turing-, RAM-machine) are polynomially
equivalent.
 For practice polynomial of high degree would suffice for runtime of attacker
algorithm on RAM-machine.

4) Why assumptions on computational restrictions, e.g., factoring is difficult?
 Complexity theory cannot prove any useful lower limits so far.
Compact, long studied assumptions!

5) What if assumption turns out to be wrong?
 a) Make other assumptions.
 b) More precise analysis, e.g., fix model of calculation exactly and then
examine if polynomial is of high enough degree.

6) Goal of proof: If attacker algorithm can break encryption system, then it can
also solve the problem which was assumed to be difficult.

71

Security classes of cryptographic systems

1. attacker assumed to be computationally unrestricted

2. cryptographically strong

3. well analyzed

4. somewhat analyzed

5. kept secret

security

72

Overview of cryptographic systems

1 2

3 4

5 6 7

8 9
10 11 DES DES

RSA RSA
chaos

well
analyzed

crypto-
graphi-
cally

strong passive
attack

active
attack

information
theoretic

security

authentication

Vernam
cipher (one-
time pad)

concealment
sym. asym. sym. asym.

sym.
encryption

system

asym.
encryption

system

sym.
 authentication

system

digital
signature
system

system type

authentication
codes

GMR
CS

pseudo one-
time pad with

 s2 mod n
generator

mathematics

system with
 s2 mod n
generator

73

Hybrid cryptosystems (1)

Combine:
•  from asymmetric systems: easy key distribution
•  from symmetric systems: efficiency (factor 100 ... 10000,

SW and HW)
How?

 use asymmetric system to distribute key for symmetric
system

Encryption:

A B
M

get cB
choose k

decrypt k with dB
decrypt M with k cB(k),k(M)

74

Hybrid cryptosystems (2)

If B is supposed also to use k: append sA(B,k)

Authentication: k authorized and kept secret

Even more efficient: part of M in first block

 k , M................................
← 128 →

←⎯ 1024 ⎯→

cB(") k(")

get cB
choose k

get tA
decrypt cB(B,k,sA(B,k))
test B,k with tA
test M with k

M,k(M),cB(B,k,sA(B,k))

MAC

75

Information-theoretically secure encryption (1)

ciphertext

S

key

k

plaintext

x

ciphertext

S

key

k

plaintext

x

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11
insecure cipher secure cipher

“Any ciphertext S may equally well be any plaintext x”

76

example : Vernam cipher mod 2
 x = 00 01 00 10

⊕ k = 10 11 01 00
 S = 10 10 01 10

subtraction of one
key bit mod 4 from 2
plaintext bits

00 0

Information-theoretically secure encryption (2)

ciphertext

S

key

k

plaintext

x

ciphertext

S

key

k

plaintext

x

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11
insecure cipher secure cipher

“Any ciphertext S may equally well be any plaintext x”

77

Information-theoretically secure encryption (3)

ciphertext

S

key

k

plaintext

x

00

01

10

11

00

01

10

11
secure cipher

Different probability distributions – how do they fit?

unevenly
distributed

equally
distributed

equally
distributed

Unevenly distributed plaintexts

enciphered with equally distributed keys

yield equally distributed ciphertexts.

78

Information-theoretically secure encryption (4)

ciphertext

S

key

k

plaintext

x

00

01

10

11

00

01

10

11
secure cipher

Different probability distributions – how do they fit?

unevenly
distributed

equally distribu-
ted, but not

independently of
the ciphertexts

equally
distributed

Equally distributed ciphertexts

deciphered with equally distributed

keys can yield unevenly distributed

plaintexts, iff ciphertexts and keys are

not independently distributed, i.e., the

ciphertexts have been calculated

using the plaintext and the key.

79

Vernam cipher (one-time pad)

All characters are elements of a group G.
Plaintext, key and ciphertext are character strings.

For the encryption of a character string x of length n, a
randomly generated and secretly exchanged key
k = (k1,...,kn) is used.

The i
th plaintext character xi is encrypted as

 Si := xi + ki

It can be decrypted with
 xi := Si - ki.

Evaluation: 1. secure against adaptive attacks
 2. easy to calculate
 3. but key is very long

80

Keys have to be very long for information-theoretical security

K is the set of keys,
X is the set of plaintexts, and
S is the set of ciphertexts, which appear at least once.

|S| ≥ |X| otherwise it can’t be decrypted (fixed k)

|K| ≥ |S| so that any ciphertext might as well be
 any plaintext (fixed x)

therefore |K| ≥ |X|.

If plaintext cleverly coded, it follows that:

The length of the key must be at least the length of
the plaintext.

81

Preparation: Definition for information-theoretical security

How would you define
 information-theoretical security
for encryption?

Write down at least
 2 definitions
and argue for them!

82

Definition for information-theoretical security

1. Definition for information-theoretical security
(all keys are chosen with the same probability)

 ∀S ∈ S ∃ const ∈ IN ∀x ∈ X: |{k ∈ K| k(x) = S}| = const. (1)

The a-posteriori probability of the plaintext x is W(x|S), after the attacker
got to know the ciphertext S.

2. Definition
 ∀S ∈ S ∀x ∈ X: W(x|S) = W(x). (2)

Both definitions are equivalent (if W(x) > 0):

According to Bayes:

Therefore, (2) is equivalent to
 ∀S ∈ S ∀x ∈ X: W(S|x) = W(S). (3)

We show that this is equivalent to
 ∀S ∈ S ∃ const' ∈ IR ∀x ∈ X: W(S|x) = const'. (4)

)(
)|()()|(

SW
xSWxWSxW •

=

83

Proof

(3)⇒(4) is clear with const':= W(S).

Conversely, we show const' = W(S):

(4) is already quite the same as (1): In general holds
 W(S|x) = W({k | k(x) = S}),

 and if all keys have the same probability,
 W(S|x)= |{k | k(x) = S}| / |K|.

Then (4) is equivalent (1) with
 const = const' • |K|.

.

)(

)(

)()(

const'

xWconst'

xW

xWSW

x

x

x

=

•=

•=

•=

∑

∑

∑ W(S|x)

const'

84

Another definition for information-theoretical security

Sometimes, students come up with the following definition:

 ∀S ∈ S ∀x ∈ X: W(S) = W(S|x).
This is not equivalent, but a slight modification is:

3. Definition
 ∀S ∈ S ∀x ∈ X with W(x)>0: W(S) = W(S|x).

Definitions 2. and 3. are equivalent:
Remember Bayes:

 W(x|S) = W(x) <==> (Bayes)

 = W(x) <==> (if W(x) ≠0, we can divide by W(x))

 W(S|x) = W(S)

W(S|x) as proposed by some students assumes that x may be sent, i.e. W(x)>0.

)(
)|()()|(

SW
xSWxWSxW •

=

)(
)|()()|(

SW
xSWxWSxW •

=

85

Symmetric authentication systems (1)

Key distribution:
like for symmetric encryption systems

Simple example (view of attacker)

H,0 H,1 T,0 T,1
00 H - T -
01 H - - T
10 - H T -
11 - H - T

x,MAC

k

Security: e.g. attacker wants to send T.
a) blind: get caught with a probability of 0.5

b) seeing: e.g. attacker gets H,0 ⇒ k ∈ {00, 01}

still both, T,0 and T,1, have a probability of 0.5

The outcome of
tossing a coin
(Head (H) or Tail (T))
shall be sent in an
authenticated fashion:

86

Symmetric authentication systems (2)

Definition “Information-theoretical security”
with error probability ε:
∀x, MAC (that attacker can see)
∀y ≠ x (that attacker sends instead of x)
∀ MAC' (where attacker chooses the one with the highest probability fitting y)

W(k(y) = MAC' | k(x) = MAC) ≤ ε

(probability that MAC' is correct if one only takes the keys k which are still
possible under the constraint of (x,MAC) being correct.)

Improvement of the example:
a) 2σ key bits instead of 2: k = k1 k1

... kσ kσ
MAC = MAC1,...,MACσ; MACi calculated using ki ki*
⇒ error probability 2-σ

b) l message bits: x(1), MAC(1) = MAC1
(1), ... , MACσ

(1)

 x(
 l

), MAC(
 l

) = MAC1
(

 l
), ... , MACσ

(
 l

)

87

Symmetric authentication systems (3)

Limits:
σ-bit-MAC ⇒ error probability ≥ 2-σ

(guess MAC)

σ-bit-key ⇒ error probability ≥ 2-σ
(guess key, calculate MAC)

still clear: for an error probability of 2-σ, a σ-bit-key is too short,
because k(x) = MAC eliminates many values of k.

Theorem: you need 2σ-bit-key
(for succeeding messages σ bits suffice, if recipient adequately
responds on authentication “errors”)

Possible at present: ≈ 4σ • log2(length(x))
 (Wegman, Carter)

much shorter as one-time pad

88

About cryptographically strong systems (1)

Mathematical secrets:
 (to decrypt, to sign ...)
 p, q, prime numbers

Public part of key-pair:
 (to encrypt, to test ...)
 n = p • q

p, q big, at present ≈ l = 500 up to 2000 bit
(theory : l → ∞)

Often: special property
 p ≡ q ≡ 3 mod 4 (the semantics of “≡ ... mod” is:

 a ≡ b mod c iff c divides a-b,
 putting it another way: dividing a and b
 by c leaves the same remainder)

89

About cryptographically strong systems (2)

application: s2-mod-n-generator,
 GMR and many others,
 e.g., only well analyzed systems like RSA

 (significant alternative: only “discrete logarithm”,
 based on number theory, too, similarly well analyzed)

necessary: 1. factoring is difficult
 2. to generate p,q is easy
 3. operations on the message with n alone, you

 can only invert using p, q

90

clear: in NP ⇒ but difficulty cannot be proved yet
 complexity at present

 , c ≈ 1,9
 “sub-exponential”

practically up to 155 decimal digits in the year 1999
 174 decimal digits in the year 2003

 200 decimal digits in the year 2005
 232 decimal digits in the year 2010 (www.crypto-world.com/FactorRecords.html)

(notice :
 ∃ faster algorithms, e.g., for 2r ± 1, but this doesn’t matter)

assumption: factoring is hard
(notice : If an attacker could factor, e.g., every 1000th n,

 this would be unacceptable.)

Factoring

3 2))ln((ln)ln()(nncenL ⋅⋅=
3 le≈

91

Factoring assumption

∀ PPA F (probabilistic polynomial algorithm, which tries to
 factor)

∀ polynomials Q
∃ L ∀ l ≥ L : (asymptotically holds:)

 If p, q are random prime numbers of length l and n = p • q :

 W(F(n) = (p, q)) ≤

(probability that F truly factors
decreases faster as .)

trustworthy ??
 the best analyzed assumption of all available

1
Q(l)

1
any polynomial

92

Search of prime numbers (1)

1. Are there enough prime numbers ? (important also for factoring assumption)

 π (x) number of the prime numbers ≤ x
 “prime number theorem”

 ⇒ up to length l more than every l
th.

 And ≈ every 2nd ≡ 3 mod 4 “Dirichlet’s prime number theorem”

2. Principle of search:
 repeat
 choose random number p (≡ 3 mod 4)
 test whether p is prime
 until p prime

)ln(
1)(
xx

x
≈

π

93

Search of prime numbers (2)

3. Primality tests:
 (notice: trying to factor is much too slow)
 probabilistic; “Rabin-Miller”
 special case p ≡ 3 mod 4 :

 p prime ⇒ ∀ ≡ 0 mod p : ≡ ± 1 (mod p)

 p not prime ⇒ for ≤ of ´s : ≡ ± 1 (mod p)

⇒ test this for m different, independently chosen values of a,

 error probability ≤
 (doesn’t matter in general)

2
1−p

a

2
1−p

a

m4
1

1
4

a

a

94

Zn : ring of residue classes mod n = {0, ... , n-1}

•  +, -, • fast

•  exponentiation “fast” (square & multiply)

 example: ; from left

 71 710 7110 71100 711010

 711 71101

•  gcd (greatest common divisor) fast in Z (Euclidean Algorithm)

Calculating with and without p,q (1)

2)11010(26 77 =

s

s

s

s m m

95

Calculating with and without p,q (2)

Zn
* : multiplicative group
 a ∈ Zn

* ⇔ gcd (a,n) = 1

•  Inverting is fast (extended Euclidean Algorithm)
 Determine to a,n the values u,v with
 a • u + n • v = 1
 Then: u ≡ a-1 mod n

 example: 3-1 mod 11 ?
 = -11 + 4 • 3

 11 = 3 • 3 +2 = 1 • 3 - 1 • (11 - 3 •3)

 3 = 1 • 2 +1 1 = 1 • 3 – 1 • 2

 ⇒ 3-1 ≡ 4 mod 11

96

Calculating with and without p,q (3)

Number of elements of Zn
*

The Euler Φ- Function is defined as
 Φ(n) := ⏐{a ∈ {0,...,n-1} ⏐ gcd (a,n)=1}⏐,

whereby for any integer n ≠ 0 holds: gcd (0,n)=⏐n⏐.
It immediately follows from both definitions, that

 ⏐Zn
*⏐ = Φ(n).

For n = p•q, p,q prime and p≠q we can easily calculate Φ(n):

 Φ(n) = (p-1) • (q-1)
gcd ≠ 1 have the numbers 0, then p, 2p, …, (q-1)p and q, 2q, …, (p-1)q, and
these 1+(q-1)+(p-1) = p+q-1 numbers are for p≠q all different.

97

Calculating with and without p,q (4)

Relation between Zn ↔ Zp, Zq :
 Chinese Remainder Theorem (CRA)
 x ≡ y mod n ⇔ x ≡ y mod p ∧ x ≡ y mod q
 since
 n|(x-y) ⇔ p|(x-y) ∧ q|(x-y)
 n = p • q, p,q prime, p ≠ q

⇒ To calculate f(x) mod n, at first you have to calculate mod
p, q separately.

yp := f(x) mod p
yq := f(x) mod q

98

Calculating with and without p,q (5)

Compose ?
 extended Euclidean : u • p + v • q = 1

 y := (u • p) • yq + (v • q) • yp

Since :

CRA

mod p mod q

u • p 0 1

v • q 1 0

y 0 • yq + 1 • yp 1 • yq + 0 • yp

≡ yp ≡ yq

≡ yp mod p
≡ yq mod q

99

Calculating with and without p,q (6)

squares and roots
 QRn := { x ∈ Zn

* | ∃ y ∈ Zn
* : y2 ≡ x mod n }

 x : “quadratic residue”
 y : “root of x”
 -y is also a root (-1)2 = 1

but attention: e.g. mod 8 12 ≡ 1 32 ≡ 1 4
 72 ≡ 1 52 ≡ 1 roots

QRn multiplicative group:
 x1, x2 ∈ QRn ⇒ x1 • x2 ∈ QRn : (y1y2)2 = y1

2y2
2 = x1x2

 x1
-1 ∈ QRn : (y1

-1)2 = (y1
2)-1 = x1

-1

100

Calculating with and without p,q (7)

squares and roots mod p, prime:
 Zp field
 ⇒ as usual ≤ 2 roots
 x ≡ 0, p ≠ 2 : 0 or 2 roots

 ⇒ |QRp| = (square function is 2 → 1)

Jacobi symbol x 1 if x ∈ QRp (for x ∈ Zp
*)

 p -1 else

2
1−p

x 0 1 2 –2 –1 = p - 1

x2 0 1 4 4 1

2
1−p

2
1−

−
p

:=

101

Calculating with and without p,q (8)

Continuation squares and roots mod p, prime:

 Euler criterion :

 (i.e. fast algorithm to test whether square)

Proof using little Theorem of Fermat: x
p

-1 ≡ 1 mod p

co-domain ok : ∈ {±1}, because ≡ 1

x square :

x nonsquare : The solutions of are the
 squares. So no nonsquare satisfies the equation.

 Therefore: .

2
1−p

x 22
1

)(
−p

x

2
1−p 12

1

≡
−p

x

12
1

−≡
−p

x

px
p
x p

mod2
1−

≡

1)(1 12
1

22
1

≡≡≡⇒= −
−−

p
pp

yyx
p
x

102

Calculating with and without p,q (9)

squares and roots mod p ≡ 3 mod 4
•  extracting roots is easy: given x ∈ QRp

 mod p is root

 proof : 1. p ≡ 3 mod 4 ⇒ ∈ N

 2.
 ⇓

 Euler, x ∈ QRp
In addition: w ∈ QRp (power of x ∈ QRp) → extracting roots iteratively is possible

• 

⇒ -1 ∉ QRp
⇒ of the roots ± w: -w ∉ QRp (otherwise –1 = (-w) • w-1 ∈ QRp)

4
1

:
+

=
p

xw

4
1+p

xxxxxw
ppp

•=•===
−

+
−+

12
11

2
1

2
1

2

≡ (-1) = (-1) = (-1) = -1
p-1 4r+2 2r+1
 2 2

p = 4r+3

-1
 p

103

Calculating with and without p,q (10)

squares and roots mod n using p,q
 (usable as secret operations)

•  testing whether square is simple (n = p •q, p,q prime, p≠q)

 x ∈ QRn ⇔ x ∈ QRp ∧ x ∈ QRq
 Chinese Remainder Theorem
 proof: “⇒” x ≡ w2 mod n ⇒ x ≡ w2 mod p ∧ x ≡ w2 mod q
 “⇐” x ≡ wp

2 mod p ∧ x ≡ wq
2 mod q

 w := CRA(wp,wq)
 then w ≡ wp mod p ∧ w ≡ wq mod q
 using the Chinese Remainder Theorem for
 w2 ≡ wp

2 ≡ x mod p ∧ w2 ≡ wq
2 ≡ x mod q

 we have
 w2 ≡ x mod n

104

Calculating with and without p,q (11)

Continuation squares und roots mod n using p,q

x ∈ QRn ⇒ x has exactly 4 roots
 (mod p and mod q : ± wp, ± wq.
 therefore the 4 combinations according to the Chinese
 Remainder Theorem)

•  extracting a root is easy (p, q ≡ 3 mod 4)
 determine roots wp, wq mod p, q

 combine using CRA

4
1

:
+

=
p

p xw 4
1

:
+

=
q

q xw

105

Calculating with and without p,q (12)

Continuation squares und roots mod n using p,q

Jacobi symbol

So: x +1 if x ∈ QRp ∧ x ∈ QRq ∨
 = x ∉ QRp ∧ x ∉ QRq
 n - 1 if “cross-over”

So : x ∈ QRn ⇒ x
 n
 ⇐ does not hold

= 1

q
x

p
x

n
x

•= :

106

Calculating with and without p,q (13)

continuation squares und roots mod n using p,q

to determine the Jacobi symbol is easy

 e.g. p ≡ q ≡ 3 mod 4

 but –1 ∉ QRn, because ∉ QRp,q

€

−1
n

 = −1
p

•
−1
q

 = (−1)• (−1) = 1

107

Calculating with and without p,q (14)

squares and roots mod n without p,q

•  extracting roots is difficult: provably so difficult as to factor
 a) If someone knows 2 significantly different roots of an
 x mod n, then he can definitely factor n.
 (i.e. w1

2 ≡ w2
2 ≡ x, but w1 ≡ ±w2 ⇒ n | (w1 ±w2))

 proof: n | w1
2-w2

2 ⇒ n | (w1+w2)(w1-w2)

 p in one factor, q in the other

 ⇒ gcd(w1+w2, n) is p or q

108

Calculating with and without p,q (15)

Continuation squares und roots mod n without p,q

 b) Sketch of “factoring is difficult ⇒ extracting a root is difficult”
 proof of “factoring is easy ⇐ extracting a root is easy”
 So assumption : ∃ W ∈ PPA: algorithm extracting a root
 to show : ∃ F ∈ PPA: factoring algorithm

 structure program F
 subprogram W
 [black box]
 begin
 ...
 call W
 ... polynomially often
 call W
 ...
 end.

109

to b)
F : input n

 repeat forever
 choose w ∈ Zn

* at random, set x:= w2

 w´:= W(n,x)
 test whether w´ ≡ ± w, if so factor according to a) break

•  to determine the Jacobi symbol is easy
 (if p and q unknown: use quadratic law of reciprocity)

 but note : If = 1, determine whether x ∈ QRn is difficult

 (i.e. it does not work essentially better than to guess)

 QRA = quadratic residuosity assumption

Calculating with and without p,q (16)

x
n

110

The s2-mod-n-Pseudo-random Bitstream Generator (PBG)

Idea: short initial value (seed) → long bit sequence (should be random from a
 polynomial attacker’s point of view)

 Scheme: Requirements:

generation
of key and
initial value
gen

PBG

l
security-
parameter

real random
number

key and
initial value

n, s

long bitstream
b0 b1 b2 ...

•  gen and PBG are efficient

•  PBG is deterministic

 (⇒ sequence reproducible)

•  secure: no probabilistic
 polynomial test can
 distinguish PBG-streams
 from real random streams

secret area

length poly(l)

111

s2-mod-n-generator

Method

•  key value: p,q prime, big, ≡ 3 mod 4
 n = p • q

•  initial value (seed): s ∈ Zn
*

•  PBG: s0 := s2 mod n
 si+1 := si

2 mod n bi := si mod 2
 ... (last bit)
 ...

Example: n = 3 ⋅ 11 = 33, s = 2

Note: length of period no problem with big numbers
(Blum / Blum / Shub 1983 / 86)

index 0 1 2 3 4

si :
bi :

4 16 25 31 4
0 0 1 1 0

162 mod 33
= 8 ⋅ 32 = 8 ⋅ (-1) = 25

252 = (-8)2 ≡ 64 ≡ 31

312 = (-2)2 = 4

112

s2-mod-n-generator as symmetric encryption system

Purpose: application as symmetric encryption system:
 “Pseudo one-time pad”

Compare: one-time pad: add long real random bit stream with plaintext
 Pseudo one-time pad: add long pseudo-random stream with plaintext

Scheme:

key generation
= generation of
key and initial
value

encryption:
create
b0 b1 b2 ...,
add

decryption:
create
b0 b1 b2 ...,
add

n, s

plaintext ciphertext plaintext

secret key =
key and initial value

n, s

= x0x1x2 ... = x0 ⊕ b0,
 x1 ⊕ b1, ...

secret area

x k(x) x

real random
number

l security-
parameter

113

s2-mod-n-generator as sym. encryption system: security

Idea:
If no probabilistic polynomial test can distinguish
pseudo-random streams from real random streams,
then the pseudo one-time pad is as good as the
one-time pad against polynomial attacker.

 (Else the attacker is a test !)

Construction works with any good PBG

114

s2-mod-n-generator as asymmetric encryption system

key generation

encryption:
create
s0 s1 s2 ...,
b0 b1 b2 ...,
add

 decryption:
 create
 sk sk-1 ... s1 s0
 b0 b1 b2 ...,
 add

plaintext ciphertext plaintext

= x0x1x2 ... = x0 ⊕ b0,
 x1 ⊕ b1, ...
 xk ⊕ bk, sk+1

real random
number

security-
parameter

l

n
public key =

modulus

p, q

x x c(x)

secret area

S random initial value

private key = factors

1
0

chosen ciphertext-plaintext attack

1
0

= x0, x1, x2 ...,
sk+1

1,()2

115

s2-mod-n-generator is cryptographically strong: ⇔

∀ P ∈ PPA { predictor for b0 }

∀ constants δ, 0 < δ < 1 { frequency of the “bad” n }

∀  t ∈ N : { degree of the polynomial }

if l (= |n|) sufficiently big it holds: for all keys n except of at most a δ-fraction

W(b0=P(n,b1b2...bk)| s ∈ Zn
* random) < +

Security of the s2-mod-n-generator (1)

unpredictability to the left will do

PBG

n s

b0 b1 b2 ... bk

P

n

1 1

2 l t

b

116

Security of the s2-mod-n-generator (2)

Proof: Contradiction to QRA in 2 steps
Assumption: s2-mod-n-generator is weak, i.e. there is a predictor P,

 which guesses b0 with ε-advantage given b1 b2 b3 ...

Step 1: Transform P in P*, which to a given s1 of QRn
 guesses the last bit of s0 with ε-advantage.

 Given s1.
 Generate b1 b2 b3 ... with s2-mod-n-generator, apply P to that stream.
 P guesses b0 with ε-advantage. That is exactly the result of P*.

Step 2: Construct using P* a method R, that guesses with
 ε-advantage, whether a given s* with Jacobi symbol +1

 is a square.

 Given s*. Set s1 := (s*)2.
 Apply P* to s1. P* guesses the last bit of s0 with ε-advantage, where s*
and s0 are roots of s1; s0 ∈ QRn.
 Therefore s* ∈ QRn ⇔ s* = s0

117

Security of the s2-mod-n-generator (3)

The last bit b* of s* and the guessed b0 of s0 suffice to guess correctly,
because
1) if s* = s0, then b* = b0
2) to show: if s* ≠ s0, then b* ≠ b0

 if s* ≠ s0 because of the same Jacobi symbols, it holds
 s* ≡ -s0 mod n

 therefore s* = n – s0 in Z
 n is odd, therefore s* and s0 have different last bits

The constructed R is in contradiction to QRA.

Notes:
1) You can take O(log(l)) in place of 1 bit per squaring.
2) There is a more difficult proof that s2-mod-n-generator is secure under

the factoring assumption.

118

Security of PBGs more precisely (1)

Requirements for a PBG:
“strongest” requirement: PBG passes each probabilistic Test T with
polynomial running time.
pass = streams of the PBG cannot be distinguished from real random

 bit stream with significant probability by any probabilistic
 test with polynomial running time.

probabilistic test with polynomial running time = probabilistic
 polynomial-time restricted algorithm that assigns to each
 input of {0,1}* a real number of the interval [0,1].
 (value depends in general on the sequence of the
 random decisions.)

Let αm be the average (with respect to an even distribution) value, that
T assigns to a random m-bit-string.

119

Security of PBGs more precisely (2)

PBG passes T iff
 For all t > 0, for sufficiently big l the average
 (over all initial values of length l), that T assigns to the
 poly(l)-bit-stream generated by the PBG, is in αpoly(l)±1/l t

To this “strongest” requirement, the following 3 are equivalent
(but easier to prove):

 For each generated finite initial bit string, of which any
 (the rightmost, leftmost) bit is missing, each
 polynomial-time algorithm P (predictor) can “only guess”
 the missing bit.

Idea of proof: From each of these 3 requirements follows the “strongest”
 easy: construct test from predictor
 hard: construct predictor from test

120

Security of PBGs more precisely (3)

Proof (indirect): Construct predictor P from the test T.
 For a t>0 and infinitely many l the average
 (over all initial values of length l), that T assigns to the
 generated poly(l)-bit-string of the PBG is (e.g. above)
 αpoly(l)±1/l t. Input to T a bit string of 2 parts: j+k=poly(l)
 real random

 A={r1 ... rj rj+1 b1 ... bk} are assigned a value closer to αpoly(l)
 B={r1 ... rj b0 b1 ... bk} are assigned a value more distant to αpoly(l) ,
 generated by PBG e.g. higher
 Predictor for bit string b1 ... bk constructed as follows:
 T on input {r1 ... rj 0 b1 ... bk} estimate α0
 T on input {r1 ... rj 1 b1 ... bk} estimate α1

 Guess b0 = 0 with probability of 1/2 + 1/2 (α0- α1)

(more precisely: L. Blum, M. Blum, M. Shub: A simple unpredictable Pseudo-Random Number
Generator; SIAM J. Comput. 15/2 (May 1986) page 375f)

121

Summary of PBG and motivation of GMR

Reminder:
 s2-mod-n-generator is secure against passive attackers for arbitrary
distributions of messages

 reason for arrow: random number’ in picture asymmetric
 encryption systems

 memorize term: probabilistic encryption

Terms:
 one-way function
 one-way permutation
 one-way = nearly nowhere practically invertible
 variant: invertible with secret (trap door)

Motivation:
 active attack on s2-mod-n-generator as asymmetric encryption system

122

Scheme of security proofs (1)

 call result

 result

Alg.1: get to know
something about the
plaintext (or provide
signature, respectively)

Alg.2: solve the number
theoretic problem

Alg.3: get secret key

passive attacker attacked person

•  choose random
number

•  generate key
•  publish a part of

the key, if
appropriate

ciphertext

constructive
proof

often

.

.

.

123

Scheme of security proofs (2)

 call result

 result

Alg.1: get to know
something about
the plaintext (or
provide signature,
respectively)

Alg.2: solve the number
theoretic problem

Alg.3: get secret key

(adaptive) active attacker attacked person
. . .

. . .

ciphertext

plaintext

Seemingly, there are no provably secure cryptosystems against adaptive
active attacks.
A constructive security proof seems to be a game with fire.

•

•

124

Why fallacy ?

Alg.1: non uniform:
only own key

Alg.2: has to demand
uniformity

attacker attacked person

Alg.1: uniform for any
key

GMR – signature system
Shafi Goldwasser, Silvio Micali, Ronald Rivest:
A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks;
SIAM J. Comput. 17/2 (April 1988) 281 – 308

Main ideas
1) Map a randomly chosen reference R, which is only used once.
2) Out of a set of collision-resistant permutations (which are invertible using a
 secret) assign to any message m one permutation.

R Sig
Fn,m (R)

Fn,m (Sig)

- 1

R
m

R
m

125

GMR – signature system (1)

Consequence
“variation of m” (active attack) now means also a
“variation of R” – a randomly chosen reference, that is unknown to the
attacker when he chooses m.

Problems
1) securing the originality of the randomly chosen reference
2) construction of the collision-resistant permutations (which are
 invertible only using the secret) which depend on the messages

Solution of problem 2
Idea Choose 2 collision-resistant permutations f0, f1 (which are

 invertible only using the secret) and compose Fn,m by f0, f1.
 {for simplicity, we will write f0 instead of fn,0 and f1 instead of fn,1}

Def. Two permutations f0,f1 are called collision-resistant iff
 it is difficult to find any x,y,z with f0(x) = f1(y) = z

Note Proposition: collision-resistant ⇒ one-way
 Proof (indir.): If fi isn’t one-way: 1) choose x; 2) f1-i(x) = z; 3) fi-1(z) = y

 z z
 f0 f1 2) f1-i 3) fi-1
 x y 1) x y

126

?

GMR – signature system (2)

Construction:
For m = b0b1...bk (b0,...,bk ∈ {0,1}) let

 Fn,m := f ° f ° ... ° f

 Fn,m := f ° ... ° f ° f

Signing: R f (R) ... f (...(f (R))...) =: Sig

Testing: Sig f (Sig) ... f (...(f (Sig))...) = R

b0 b1 bk

 -1 -1 -1
bk b1 b0

-1

-1 -1 -1
b0 bk b0

R
m

f f f

R R R
m m m

-1 -1 -1
b0 b1 bk

f f f bk bk-1 b0

bk b0 bk

Sig • • • • •R R
1110

f0 f1 f1 f1

Example:

127

GMR – signature system (3)

Problem: intermediate results of the tests are valid signatures
for the start section of the message m

Idea: coding the message prefix free

Def. A mapping <•>: M → M is called prefix free
 iff ∀ m1,m2 ∈ M: ∀ b ∈ {0,1}+: <m1>b ≠ <m2>
 <•> injective

Example for a prefix free mapping
 0 → 00 ; 1 → 11 ; end identifier 10

Prefix-free encoding should be efficient to calculate both ways.

128

To factor is difficult (1)

Theorem: If factoring is difficult, then
 collision-resistant permutation pairs exist

Proof: secret: p•q = n ; p ≡83 und q ≡87 (Blum numbers)

 it holds: = 1

 = -1

 x2 mod n , if <
 -x2 mod n , else

 (2x)2 mod n, if <
 -(2x)2 mod n, else

 Domain : {x ∈ Zn
* | =1 , 0 < x < }

-1 ∉ QRn

n
2

n
2

n
2

f0 (x) :=

f1 (x) :=
-n 0 n n n

2 2

 -
+ n

2
n

-1
n

x
n

129

To factor is difficult (2)

to show : 1) Permutation
 2) To calculate the inverse is easy using p,q
 3) If there is a fast collision finding algorithm,

 then there is a fast algorithm to factor.

 x2 ≡n -(2y)2 cannot hold, since (2y)2 ∈ QRn.
 Therefore x2 ≡n (2y)2 ⇒ (x+2y)(x-2y) ≡n 0.

 Because = 1 and = -1 it follows that

 x ≡n ±2y

 Therefore gcd (x ±2y,n) provides a non-trivial
 factor of n, i.e. p or q.

-1 ∉ QRn

x
n

± 2y
n

= one-to-one mapping with co-domain = domain

130

Solution of problem 1 (1)
Tree of references generate (≈ sign)

Sig = F (rj)
rj -1
rj0rj1 n,<rj0rj1>

Sig = F (ri)
ri -1
Ri n,<Ri>

Sig = F (Ri)
Ri -1
mi n‘,<mi>

test

F (Sig) = rj ? n,<rj0rj1> rj0rj1

rj

F (Sig) = ri ? n,<Ri > Ri

ri

F (Sig) = Ri ? n‘,<mi > mi

Ri

The attacker gets to
know Ri only after
choosing mi.

rε

r1 r0

r01 r00

R00

m00

R01

m01

.
 .
 .

Sig rε
r0r1

Sig r0
r00r01

Sig r00
R00

Sig R00
m00

signature
system 1
no active

attack

reference R;
probabilistic

 signature
system 2

signature
system1

signature
system 2

131

Solution of problem 1 (2)

Proposition If the permutation pairs are collision resistant,
then the adaptive active attacker can’t sign any message
with GMR.

Proof A forged signature leads either to a collision in the tree
of references (contradiction) or to an additional legal
signature. So the attacker has inverted the collision-
resistant permutation. With this ability he could generate
collisions (contradiction).

f0

first differing bit position
↓

Sig • • • • •R R
1110

f0 f1 f1 f1

Example:

132

Note

In the proof you dispose the “Oracle” (the attacked person) by
showing that the attacker can generate „half“ the tree from the
bottom or (exclusive) “half” the tree from the top with the same
probability distribution as the attacked person.

Lesson:
randomly chosen references each used only once
(compare one-time-pad) make adaptive active attacks
ineffective

→ arrow explained (random number z') in figure signature system

133

GMR signature system

key
generation:
p,p‘≡ 3 mod 8
q,q‘≡ 7 mod 8
rε
n:=p•q
n‘:=p‘•q‘

Test
M-signature
R-signature
and
K-signatures

generate tree of
references once
and for all or for
each message
one “branch”

n,n‘,rε

m, s(m) m

key for signing;
kept secret

p, q
p‘, q‘
rε

random number‘ z‘

random number

m, s(m)

key for testing of
signature;
publicly known

plaintext
with signature

“pass”
 or “fail”

plaintext with
signature and
test result

MSig = Fpräf(m)
-1(Ri),

RSig = Fpräf(Ri)
-1(ri),

KSig = Fpräf(ri|•)
-1(ri-1), ...

 Fpräf(ri|r1)
-1(rε)

secret area

134

Key generation
1) Choose two prime numbers p and q at random as well as

stochastically independent, with |p| ≈ |q| = l , p ≠ q
2) Calculate n := p • q
3) Choose c with 3 ≤ c < (p-1)(q-1) and gcd(c, (p-1)(q-1)) = 1

 Φ(n)
4) Calculate d using p, q, c as multiplicative inverse of c mod Φ(n)

c • d ≡ 1 (mod Φ(n))
5) Publish c and n.

En- / decryption
exponentiation with c respectively d in Zn

Proposition: ∀m∈ Zn holds: (mc)d ≡ mc • d ≡ (md)c ≡ m (mod n)

RSA - asymmetric cryptosystem
R. Rivest, A. Shamir, L. Adleman: A Method for obtaining Digital Signatures and
Public-Key Cryptosystems; Communications of the ACM 21/2 (Feb. 1978) 120-126.

135

Proof (1)

 c • d ≡ 1 (mod Φ(n)) ⇔
 ∃k∈ Z : c • d - 1 = k • Φ(n) ⇔
 ∃k∈ Z : c • d = k • Φ(n) + 1

Therefore m
c • d ≡ m

k • Φ(n) +1 (mod n)

Using the Theorem of Fermat
 ∀m∈ Zn*: mΦ(n) ≡ 1 (mod n)

it follows for all m coprime to p
 m

p-1 ≡ 1 (mod p)

Because p-1 is a factor of Φ(n), it holds
m

k • Φ(n) +1 ≡p m
k • (p-1)(q-1) +1 ≡p m • (m

p-1)
k • (q-1) ≡p m

 1
 1

136

Proof (2)

Holds, of course, for m ≡p 0. So we have it for all m ∈ Zp.
Same argumentation for q gives

m
k • Φ(n) +1 ≡q m

Because congruence holds relating to p as well as q, according

to the CRA, it holds relating to p • q = n.

Therefore, for all m ∈ Zn

 m
c • d ≡ mk • Φ(n) +1 ≡ m (mod n)

Attention:
There is (until now ?) no proof
RSA is easy to break ⇒ to factor is easy

137

Naive insecure use of RSA

RSA as asymmetric encryption system
Code message (if necessary in several pieces) as number m < n

Encryption of m: mc mod n

Decryption of mc: (mc)d mod n = m

RSA as digital signature system
Renaming: c → t, d → s

Signing of m: ms mod n

Testing of m, ms: (ms)t mod n = m ?

138

RSA as asymmetric encryption system: naive

key generation:
p, q prime numbers
n := p•q
c with gcd(c,(p -1)(q -1)) = 1
d ≡ c -1 mod (p -1)(q -1)

encryption

x
c mod n

decryption

(c(x))d=(xc)
d
≡ x mod n

c, n

x x

decryption key,
kept secret d, n

random number‘

c(x)

encryption key,
publicly known

ciphertext plaintext

secret area

plaintext

random number

139

RSA as asymmetric encryption system: example

key generation:
 p, q 3, 11
 n 33
 c 13 with gcd(13,20)=1
 d 17

encryption

(-2)13 ≡
(-2)5•(-2)5•(-2)3 ≡
1•1•(-8) ≡ 25

decryption
2517 ≡ (-8)17

≡ 648•(-8) ≡
(-2)8•(-8) ≡ (-2)5•(-2)5•(-2) ≡
1•1•(-2) ≡ 31

 13, 33

31 31

decryption key,
kept secret

17,
33

random
number‘

25

encryption key,
publicly known

ciphertext plaintext

secret area

plaintext

random number

140

RSA as digital signature system: naive

key generation:
p, q prime numbers
n := p•q
t with gcd(t,(p -1)(q -1) = 1
s ≡ t -1 mod (p -1)(q -1)

“decryption”

(s(x))t=(xs)
t

≡ x mod n

“encryption”

 xs mod n

t, n

x, s(x),
t(x, s(x))

x

key to sign,
kept secret s, n

random number‘

x, s(x)

key to test the
signature,
publicly known

text with signature
text with signature
and test result

secret area

text

random number

141

Attack on encryption with RSA naive

(x c)
d ≡ x

(x•y) c = x c • y c

((x•y) c) d ≡ x • y

ciphertext intercepted

calculated from y
by the attacker

let it decrypt

 divide by y, get x

142

Attack on digital signature with RSA naive

(x s)
t ≡ x

(x s •y) t ≡ x • y t

((x s •y) t)
s ≡ x s • y

message
wanted

chosen
message y

divide by y, get x
s

let it sign

143

Attack on digital signature with RSA: alternative presentation

(x s)
t ≡ x

(u •v) t = u t • v t

(x•y) s = x s • y s

let it sign

message
wanted

chosen
message v

= x s • v
divide by v, get x

s

144

Transition to Davida’s attacks
simple version of Davida’s attack:
(against RSA as signature system)

1. Given Sig1 = m1
s

 Sig2 = m2
s

⇒ Sig := Sig1 • Sig2 = (m1 • m2)s
New signature generated !
(Passive attack, m not selectable.)

2. Active, desired Sig = ms

Choose any m1; m2 := m • m1
-1

Let m1, m2 be signed.
Further as mentioned above.

3. Active, more skillful (Moore) {see next transparency}
“Blinding” : choose any r ,

 m2 := m • r
t

 m2
s = ms • r

t • s = ms • r

sign
m2

• r -1

ms = Sig

145

Active Attack of Davida against RSA

1.) asymmetric encryption system:
 Decryption of the chosen message mc

Attacker chooses random number r, 0 < r < n
 generates r

c mod n; this is uniformly distributed in [1, n-1]
 lets the attacked person decrypt r

c • mc ≡:n prod
Attacked person generates prodd mod n
Attacker knows that prodd ≡n (r

c • mc)d ≡n r
c • d • mc • d ≡n r • m

 divides prodd by r and thereby gets m.

 If this doesn’t work: Factor n.

2.) digital signature system:
 Signing of the chosen message m.

Attacker chooses random number r, 0 < r < n
 generate r t mod n; this is uniformly distributed in [1, n-1]
 lets the attacked person sign r t • m ≡:n prod

Attacked person generates prods mod n
Attacker knows that prods ≡n (r t • m)s ≡n r t • s • ms ≡n r • ms

 divides prods by r and thereby gets ms.

 If this doesn’t work: Factor n.

146 Defense against Davida’s attacks using a collision-resistant hash
function

h() : collision-resistant hash function

1.) asymmetric encryption system

plaintext messages have to fulfill redundancy predicate

m, redundancy ⇒ test if h(m) = redundancy

2.) digital signature system

Before signing, h is applied to the message

signature of m = (h(m))s mod n

test if h(m) = ((h(m))s)t mod n

Attention: There is no proof of security (so far ?)

147

RSA as asymmetric encryption system

key generation:
p, q prime number
n := p•q
c with gcd(c,(p -1)(q -1)) = 1
d ≡ c -1 mod (p -1)(q -1)

encryption

(r,x,h(r,x))c mod n

decryption

(•)d mod n =: r,x,y;
if h(r,x) = y then
output 2nd component of
((r,x,h(r,x))c)d mod n

c, n

x x

decryption key,
kept secret d, n

random number‘ r

c(x)

encryption key,
publicly known

ciphertext plaintext

secret area

plaintext

random number

collision-resistant hash function h
- globally known -

148

RSA as digital signature system

key generation:
p, q prime number
n := p•q
t with gcd(t,(p -1)(q -1)) = 1
s ≡ t -1 mod (p -1)(q -1)

“decryption”
(s(x))t=((h(x)s)

t
≡ h(x) mod n

“encryption”

 (h(x))s mod n

t, n

x, s(x),
t(x, s(x))

x

key to sign,
kept secret s, n

x, s(x)

key to test the signature,
publicly known

text with
signature

text with signature
and test result

secret area

text

random number

collision-resistant hash function h
- globally known -

149

Faster calculation of the secret operation

mod p, q separately: y d ≡ w

dp := c -1 mod p-1 ⇒ (y
dp)

c ≡ y mod p

dq := c -1 mod q-1 ⇒ (y
dq)

c ≡ y mod q
once and
for all:

every time:

proof:

set w := CRA (y
dp , y

dq)
 (y

dp)
c ≡ y mod p

⇒ w c ≡
 (y

dq)
c ≡ y mod q

⇒ w c ≡ y mod n
How much faster ?
complexity exponentiation: ≈ l

3
complexity 2 exponentiations of half the length: ≈ 2 • =
complexity CRA: 2 multiplications ≈ 2 • l

2
 1 addition ≈ l

So: ≈ Factor 4 irrelevant

l 3 l
3

2 4

150

cth roots are unique

Shown : each y ∈ Zn has cth root

⇒ Function w → w
c surjective

⇒ As well injective.

151

Symmetric Cryptosystem DES
64-bit block plaintext

IP

round 1

round 2

round 16

IP
-1

64-bit-block ciphertext

R0 L0

R16 L16

R1 L1

R2 L2

R15 L15

K1

K2

K16

generation of
a key for
each of the
16 rounds

64-bit key
(only 56 bits in use)

152

One round

Feistel ciphers

f Ki

Li-1 Ri-1

Li = Ri-1 Ri = Li-1 ⊕ f(Ri-1, Ki)

153

Why does decryption work?

f Ki

Li-1 Ri-1

Li = Ri-1 Ri=Li-1⊕f(Ri-1, Ki)

f Ki

Ri=Li-1⊕f(Ri-1, Ki) Li = Ri-1

Ri-1 Li-1

Decryption
 trivial
 Li-1 ⊕ f(Ri-1, Ki) ⊕ f(Li , Ki) =
 Li-1 ⊕ f(Li, Ki) ⊕ f(Li , Ki) = Li-1

replace Ri -1 by Li

Encryption round i Decryption round i

154

Encryption function f

S8 S7 S6 S5 S4 S3 S2 S1

E

48

48

Ri-1
32

P
32

f(Ri-1, Ki)

32

Ki
48

Expansion

Use key

Mixing

Make f (and DES) non-
linear (permutations and
⊕ are linear)

Terms
•  Substitution-permutation networks
•  Confusion - diffusion

“substitution box” S can implement any
function s : {0,1}6 → {0,1}4,
for example as table.
For DES, the functions are fixed.

155

Generation of a key for each of the 16 rounds
64-bit key

(only 56 bits in use)

PC-1

LS1 LS1

LS2 LS2

D0 C0

D1 C1

D2 C2

D16 C16

PC-2

PC-2

PC-2

K1

K2

K16

28 28

56 48

choose 48 of the
56 bits for each
key of the 16
rounds

156

The complementation property of DES

DES(k, x) = DES(k, x)

157

One round

f Ki

Li-1 Ri-1

Li = Ri-1 Ri = Li-1 ⊕ f(Ri-1, Ki)

complement complement

complement complement

 complement

 original

158

Encryption function f

S8 S7 S6 S5 S4 S3 S2 S1

E

48

48

Ri-1
32

P
32

f(Ri-1, Ki)

32

Ki
48

complement

complement

original, as 0 ⊕ 0 = 1 ⊕ 1 and 1 ⊕ 0 = 0 ⊕ 1

original

original

159

Generalization of DES

1.) 56 ⇒ 16 • 48 = 768 key bits

2.) variable substitution boxes

3.) variable permutations

4.) variable expansion permutation

5.) variable number of rounds

160

Cipher

Stream cipher
synchronous
 self synchronizing

Block cipher
Modes of operation:

 Simplest: ECB (electronic codebook)
 each block separately
 But: concealment: block patterns identifiable
 authentication: blocks permutable

161

Main problem of ECB

block borders

plaintext blocks

ciphertext blocks

ECB

e.g. 64 bits
with DES

same plaintext blocks same ciphertext blocks

Telefax example (→ compression is helpful)

ECB

162

Electronic Codebook (ECB)

encryption decryption

key key

plaintext
block n

plaintext
block n

ciphertext
block n

n+1 n+1

bit error

n n

163

Cipher Block Chaining (CBC)
All lines transmit as many characters as a block comprises
 Addition mod appropriately chosen modulus
 Subtraction mod appropriately chosen modulus

encryption decryption

key key

plaintext
block n

ciphertext
block n

memory for
ciphertext block

n-1

memory for
ciphertext block

n-1

plaintext
block n

n+1 n+1 n+1

n+1

bit error

n nn

n

n+2 n+2 n+2

If error on the line:
Resynchronization
after 2 blocks,
but block borders
have to be
recognizable

• •

self synchronizing

164

Cipher Block Chaining (CBC) (2)
All lines transmit as many characters as a block comprises
 Addition mod appropriately chosen modulus
 Subtraction mod appropriately chosen modulus

encryption decryption

key key

plaintext
block n

ciphertext
block n

memory for
ciphertext block

n-1

memory for
ciphertext block

n-1

plaintext
block n

n+1 n+1 n+1

n+1

• •

useable for authentication ⇒ use last block as MAC

n+2 n+2 n+2

n+2

bit error

n nn

n

1 modified
plaintext bit
⇒ from there on
completely
different ciphertext

165

CBC for authentication

encryption encryption

key key

plaintext

ciphertext
block n

memory for
ciphertext block

n-1

memory for
ciphertext block

n-1

plaintext
block n

•

• •

last
block

•

compa-
rison

ciphertext
block n

last
block

ok ?

166

Pathological Block cipher

x1 x2 x3 . . . xb-1 0

S1 S2 S3 . . . Sb-1 1

x1 x2 x3 . . . xb-1 1

x1 x2 x3 . . . xb-1 0

 x1 x2 x3 ... xb-1

 S1 S2 S3 . . . Sb-1

plaintext block (length b)

ciphertext block (length b)

secure insecure

1

0
plaintext block (length b-1)

ciphertext block (length b-1)

pathological

167

Cipher FeedBack (CFB)

choose

encryption

shift register

1 b

choose
or

complete

choose
or

complete choose

encryption

shift register

1 b

key key

b Block length
a Length of the output unit, a ≤ b
r Length of the feedback unit, r ≤ b
 Addition mod appropriately chosen modulus
 Subtraction mod appropriately chosen modulus

b b

• •

r r

b b

a a a a

a a a a

plaintext ciphertext plaintext

symmetric;
self synchronizing

n+1

n+1 n+1 nn

168

Cipher FeedBack (CFB) (2)

choose

encryption

shifting register

1 b

choose
or

complete

choose
or

complete choose

encryption

shifting register

1 b

key key

b Block length
a Length of the output unit, a ≤ b
r Length of the feedback unit, r ≤ b
 Addition mod appropriately chosen modulus
 Subtraction mod appropriately chosen modulus

b b

• •

r r

b b

a a a a
a a a a

plaintext ciphertext plaintext

symmetric;
self synchronizing

n+1

n+1 n+1 n+2 n+2

n+2

nn

n

169

CFB for authentication

choose

encryption

shift register

1 b

choose
or

complete

choose
or

complete choose

encryption

shift register

1 b

key key

b b

• •

r r

b b

a a a a

a a

plaintext stream plaintext stream

compa-
rison ok ?

•
•

last content
of the shift

register
encrypted

last content
of the shift
register
encrypted

170

Output FeedBack (OFB)

choose

encryption

shift register

1 b

choose
or

complete

choose
or

complete

choose

encryption

shift register

1 b

key key

b Block length
a Length of the output unit, a ≤ b
r Length of the feedback unit, r ≤ b
 Addition mod appropriately chosen modulus
 Subtraction mod appropriately chosen modulus

b b

• •

r r

b b

a a

a a a

plaintext ciphertext plaintext

symmetric;
synchronous
Pseudo-one-time-pad

n+1 n+1 n n

171

Plain Cipher Block Chaining (PCBC)

encryption

key

decryption

key

memory for
ciphertext
block n-1

memory for
plaintext
block n-1

memory for
ciphertext
block n-1

memory for
plaintext
block n-1

h

h

h

plaintext ciphertext plaintext
block n block n block n

All lines transmit as many characters as a block comprises
 Addition mod appropriately chosen modulus, e.g. 2
 Subtraction mod appropriately chosen modulus, e.g. 2
 Any function, e.g. addition mod 2Block length

• • • •
n n nn+1 n+1 n+1

n+1

n+1 n+1

172

Output Cipher FeedBack (OCFB)

choose

encryption

shift register

1 b

choose
or

complete

choose
or

complete

choose

encryption

shift register

1

key key

b Block length
a Length of the output unit, a ≤ b
r Length of the feedback unit, r ≤ b
 Addition mod appropriately chosen modulus
 Subtraction mod appropriately chosen modulus
 Any function

b b

• •

r r

b b

a a

a a a

plaintext ciphertext plaintext

h h

• •

h

symmetric;
synchronous

nn

n+1

n+1 n+1

173

Properties of the operation modes

ECB CBC PCBC CFB OFB OCFB
Utilization of
indeterministic
block cipher

+ possible - impossible

Use of an
asymmetric
block cipher
results in

+ asymmetric stream cipher - symmetric stream cipher

Length of the
units of
encryption

- determined by block length of the block
cipher + user-defined

Error extension only within
the block
(assuming
the borders
of blocks
are
preserved)

2 blocks
(assuming
the borders
of blocks are
preserved)

potentially
unlimited

1 + ⎡b/r⎤
blocks, if
error placed
rightmost,
else possibly
one block
less

none as long
as no bits are
lost or added

potentially
unlimited

Qualified also for
authentication?

yes, if
redundancy
within every
block

yes, if
deterministic
block cipher

yes, even
concealment
in the same
pass

yes, if
deterministic
block cipher

yes, if
adequate
redundancy

yes, even
concealment
in the same
pass

174

Collision-resistant hash function using determ. block cipher

encryption

plaintext
block n

memory for
intermediate block

n-1

last
block

• •

efficient any
cryptographically strong

initial value is fixed!
(else trivial collisions:
 intermediate blocks and
 truncated plaintexts)

last block contains length in bit
differently
long

birthday paradox
after 2

b/2 tests collision

b

! nearly
 no, but well analyzed

175

Diffie-Hellman key agreement (1)

practically important: patent exhausted before that of RSA
 → used in PGP from Version 5 on

theoretically important: steganography using public keys

based on difficulty to calculate discrete logarithms

Given a prime number p and g a generator of Zp
*

 gx = h mod p

x is the discrete logarithm of h to basis g modulo p:

 x = logg(h) mod p

discrete logarithm assumption

176

Discrete logarithm assumption

∀ PPA DL (probabilistic polynomial algorithm, which tries to
 calculate discrete logarithms)

∀ polynomials Q
∃ L ∀ l ≥ L: (asymptotically holds)

If p is a random prime of length l
thereafter g is chosen randomly within the generators of Zp

*

 x is chosen randomly in Zp
*

and gx = h mod p

 W(DL(p,g,h)=x) ≤

 (probability that DL really calculates the discrete logarithm,
decreases faster than)

trustworthy ??
practically as well analyzed as the assumption factoring is hard

1
Q(l)

1
any polynomial

177

Diffie-Hellman key agreement (2)

key
generation:
y ∈ Zp

*

g
y mod p

calculating
shared key

(g
x)y mod p

y

random
number 2

key
generation:
x ∈ Zp

*

g
x mod p

calculating
shared key

(g
y)x mod p

x

random
number 1

publicly known:
p and g ∈ Zp

*

p, g p, g

g
x mod p g

y mod p

calculated keys are equal, because

(g
y)x = g

yx = g
xy = (g

x)y mod p

secret area

Domain
of trust

Domain
of trust

Area of attack

178

Diffie-Hellman assumption

Diffie-Hellman (DH) assumption:
Given p, g, g x mod p and g y mod p
Calculating g xy mod p is difficult.

DH assumption is stronger than the discrete logarithm assumption

•  Able to calculate discrete Logs ⇒ DH is broken.
Calculate from p, g, g x mod p and g y mod p either
x or y. Calculate g xy mod p as the corresponding partner
of the DH key agreement.

•  Until now it couldn’t be shown:
Using p, g, g x mod p, g y mod p and gxy mod p
either x or y can be calculated.

179

Find a generator in cyclic group Zp
*

Find a generator of a cyclic group Zp
*

Factor p -1 =: p1
e1 • p2

e2 • . . . • pk
ek

1.  Choose a random element g in Zp
*

2.  For i from 1 to k:

 b := g mod p

 If b =1 go to 1.

p -1
pi

180

Digital signature system
Security is asymmetric, too
usually: unconditionally secure for recipient

 only cryptographically secure for signer

message domain signature domain

x s s(x)
• •

t

true

new: signer is absolutely secure against breaking his signatures
 provable only cryptographically secure for recipient

proof of forgery • s‘(x)

distribution of risks if signature is forged: 1. recipient
2. insurance or system operator
3. signer

181

Fail-stop signature system

key
generation

sign

s

random number

generate
proof of
forgery

key for signing,
kept secret

x, s(x),
“pass” or
“fail”

x x, s(x)

plaintext with signature
and test result plaintext

t

random number‘

key for testing of
signature,
publicly known

test

verify

plaintext with
signature

“accept”
or
proof of forgery

“accepted” or
“forged”

plaintext with signature

signer

recipient

court

plaintext
with signature

182

Undeniable signatures

key
generation

sign

s

random number

key for signing,
kept secret

x, s(x),
“pass” or
“fail”

x x, s(x)

text with
signature

text with signature
and test result text

t

random number‘

key for testing of
signature,
publicly known

test

Interactive protocol for
testing the signature

183

Signature system for blindly providing of signatures

key
generation

sign

s

random number

x, s(x),
“pass” or
“fail”

x z‘(x)

blinded text

text with signature
and test result

Text

t

random number ‘

z‘

key for testing of
signature,
publicly known

blind

unblind
and test z‘(x), s(z‘(x))

blinded text
with signature

RSA
p • q = n

x • z‘
t

xs

• z‘-1

(x • z‘
t)

s
 =

x
s • z‘

184

Threshold scheme (1)

Threshold scheme:
Secret S
n parts
k parts: efficient reconstruction of S
k-1 parts: no information about S

Implementation: polynomial interpolation (Shamir,
1979)
Decomposition of the secret:

 Let secret S be an element of Zp, p being a prime number.
 Polynomial q(x) of degree k-1:
 Choose a1, a2, ... , ak-1 randomly in Zp
 q(x) := S + a1x + a2x2 + ... + ak-1xk-1

 n parts (i, q(i)) with 1 ≤ i ≤ n, where n < p.

185

Threshold scheme (2)

k parts (xj, q(xj)) (j = 1 ... k):

q(x) = q(xj) mod p

The secret S is q(0).
Sketch of proof:
1. k-1 parts (j, q(j)) deliver no information about S, because for
 each value of S there is still exactly one polynomial of degree k-1.
2. correct degree k-1; delivers for any argument xj the value q(xj)
 (because product delivers on insertion of xj for x the value 1 and
 on insertion of all other xi for x the value 0).

k

Σ
j=1

k

Π

m=1, m≠j

(x – xm)
(xj – xm)

Reconstruction of the secret:

186

Threshold scheme (3)

Polynomial interpolation is Homomorphism w.r.t. +
Addition of the parts ⇒ Addition of the secrets

Share refreshing
1.) Choose random polynomial q‘ for S‘ = 0
2.) Distribute the n parts (i, q‘(i))
3.) Everyone adds his “new” part to his “old” part

 → “new” random polynomial q+q‘ with “old” secret S

•  Repeat this, so that anyone chooses the random polynomial once
•  Use verifiable secret sharing, so that anyone can test that polynomials

are generated correctly.

187

interceptor"

possible
attackers!

telephone exchange"
•  operator"
•  manufacturer (Trojan horse)"
•  employee"

network termination"

radio"

television"

videophone"

phone"

internet"

Observability of users in switched networks

countermeasure encryption

•  link encryption

188

countermeasure encryption

•  end-to-end encryption

interceptor"

possible
attackers!

telephone exchange"
•  operator"
•  manufacturer (Trojan horse)"
•  employee"

network termination"

radio"

television"

videophone"

phone"

internet"

Observability of users in switched networks

189

countermeasure encryption

•  link encryption

•  end-to-end encryption

Problem: traffic data
who with whom?
when? how long?
how much information? Aim: “protect” traffic data (and so data on interests,

too) so that they couldn’t be captured.

data on interests: Who? What?

communication partner

interceptor"

possible
attackers!

telephone exchange"
•  operator"
•  manufacturer (Trojan horse)"
•  employee"

network termination"

radio"

television"

videophone"

phone"

internet"

Observability of users in switched networks

190

interceptor"

possible
attackers!

radio"

television"

videophone"

phone"

internet"

Observability of users in broadcast networks
(Examples: bus-, radio networks)

any station gets
•  all bits
•  analogue signals

(distance, bearing)

191

Reality or fiction?

Since about 1990 reality
Video-8 tape 5 Gbyte

 = 3 * all census data of 1987 in Germany
 memory costs < 25 EUR

100 Video-8 tapes (or in 2003: 2 hard drive disks each with
250 G-Byte for < 280 EUR each) store
all telephone calls of one year:

 Who with whom ?
 When ?
 How long ?
 From where ?

192

Excerpt from: 1984

With the development of television,
and the technical advance which
made it possible to receive and transmit
simultaneously on the same instrument,
private life came to an end.

George Orwell, 1948

193

Problems with exchanges

Interception of participant’s terminal line (to
scramble the signals is expensive and ineffective,
encryption of the analogue signals is not possible):

– message contents (content of calls)
– connection data

•  number of the callee
•  speaker identification or ⊂ message contents

Unsolved problems by dedicated design of separate
exchange:

LDE
(long-distance

exchange)

LE
(local exchange)

+ encryption:
– message contents
– connection data, if speaker identification
 or ⊂ message contents
Trojan horse vs. add-on equipment: see below

194

Mechanisms to protect traffic data

Protection outside the network
Public terminals
– use is cumbersome

Temporally decoupled processing
– communications with real time properties

Local selection
– transmission performance of the network
– paying for services with fees

Protection inside the network

195

Attacker (-model)

Questions:
•  How widely distributed ? (stations, lines)
•  observing / modifying ?
•  How much computing capacity ? (computationally

unrestricted, computationally restricted)

Unobservability of an event E
For attacker holds for all his observations B: 0 < P(E|B) < 1
perfect: P(E) = P(E|B)

Anonymity of an entity

Unlinkability of events

if necessary: partitioning in classes

