MMS [o

DIGITAL

Danil Tolonbekov

The Hyperledger Frameworks and Tools

Hyperledger URSA
a shared cryptographic library

Hyperledger INDY

provides tools, libraries, and components for
providing digital identities rooted on
blockchains or other distributed ledgers

Hyperledger Aries

creating, transmitting and storing verifiable
digital credentials

-

¢’ HYPERLEDGER

Distributed Ledgers

HYPERLEDGER %1 HYPERLEDGER J:‘* HYPERLEDGER b ~ HYPERLEDGER HYPERLEDGER HYPERLEDGER
BESU % *%¥ FABRIC $ INDY b¢ IROHA @
Java-based Parmissionable smart Enterprise-grade DLT Decentralized identity Maobile application focus Permissicned & parmissionless
Ethereum client contract machine [EVM) with privacy support support; EVM transaction family
Libraries
=mmm| HYPERLEDGER
. HYPERLEDGER = HYPERLEDGER HYPERLEDGER HYPERLEDGER HYPERLEDGER Hh GR|D
ARIES mmn QUILT ' AVALON =
HYPERLEDGER * HYPERLEDGER HYPERLEDGER » =» HYPERLEDGER
A TRANSACT 8 URSA ceLLo WA

Understanding the Architecture?

The Internet

Other Agents

Core Capabilities

Aries . REST
Protocols API

/ (Aries Cloud Agent - Python> \

/

Events| Controller Requests

Application Business Logic

1 https://github.com/hyperledger/aries-cloudagent-python/tree/d78d4ea483e76c8033141e3c6c8elab8e3a72096

Foundation for building Verifiable Credential
(VC) ecosystems

The "cloud" in the name means that ACA-Py runs
on servers (cloud, enterprise, loT devices, and so
forth)

Uses both Hyperledger Indy AnonCreds
verifiable credential and the W3C Standard
Verifiable Credential formats

Alice - Faber - ACME

(="

ALICE’'S
AGENT

.)

Alice is a graduate student Faber College ACME is acompany (MAANG)

Holder Issuer

General workflow

ol
°

issue present

HOLDER

Mananges credentials \
Uses them to create presentations
/\ of proof for Verifiers

T - I - write read
MM s = ===y Verifiable Data Registry == = ==

ISSUER VERIFIER
Digitally signs attestations Requests proof
Packages and gives credentials to Holder Verifies that issuer attestations

satisfy requirements

Verifiable Data Registry

* The primary purpose of the ledger is to be a place for a verifiable credential issuer to publish cryptographic keys and
credential metadata so that a prover can produce a presentation that a verifier can cryptographically verify.

* Intheory, such information could be digitally published in other ways, but the attributes of a ledger are ideal for this
purpose:

« Data written to a distributed ledger (such as Indy) is immutable—it can’t ever be changed.
* Ledger datacan’t be removed
* Multiple parties (that is, validators or miners) reach consensus on what is to be written to a ledger

 The dataisreplicated across a set of independent parties and as such is highly available.

» Genesis file (download, resolve)

e test.bcovrin.vonx.io/genesis

http://test.bcovrin.vonx.io/genesis

Agent Start Up

_ ANOTHER
... it needs to know: AGENT

* The location of the genesis file(s) for the ledger(s) it
WIu use (If aHYJ. An incoming credential
offer via DIDComm.
* --genesis-file <genesis-file>, ACAPY_GENESIS_FILE

* Ifit needs objects (DIDs, schema, etc.) on the ledger,
checking that they exist on ledger and in secure
storage, and creating those objects if they don’t exist.

The ACA-Py Instance:

1. Determines connection type.
2. Creates protocol state object.
3. Stores protocol state object.
4. Sends webhook protocol
state object in its wallet.

* Transport (such as HTTP or web sockets) endpoints for Your agent, or

more specifically,

messaging other agents. the controller The Controller:

you wrote!

1. Figures out the business logic
you defined to handle the
credential offer (e.g. accept,
reject. queue, etc.).

2. Retrieves info from protocol.

3. Constructs and sends an
HTTP request to appropriate
ACA-Py administrative endpoint.

« Storage options for keys and other data.

* Interface details between the agent framework and
the controller for events and requests.

DEMO

Issuer Initialization! (1)

* Faber creates a wallet, with a Public DID as needed by a Verifiable Credential Issuer.

created = awalt faber_agent.agent.register or_switch wallet{
target wallet name,
public_did=True,

mediator_agent=faber_agent.mediator_agent,

* Increating the Faber wallet, create Faber's DID

if public_did:
if cred_ftype == CRED_FORMAT_TIMDY:
assign public did
new_did = await self.admin_PosT{"/wallet/did/create")
self.did = new_did["result"]["did"]
await self.register_did(

did=new_did["result"]["did"], wverkey=new did["result"]["verkey"]

J—

=l

walt self.admin_POST("/wallet/did/public?did=" + self.did)}

1 https://github.com/hyperledger/aries-cloudagent-python/tree/d78d4ea483e76c8033141e3c6c8elab8e3a72096/demo/runners

Issuer Initialization (2)

e Call to self.seed to generate arandom seed for the agent.

rand_name = stri{random.randint(lee_eea, 999_999))
self.seed = (
{("ey_seed PO5B200222220000008288822" + rand_name)[-32:]
if seed == "randcom”

glze seed

* Faberregisters a schema and credential definition on the ledger.

create a schema and cred def for the new wallet
TODO check first 1 ase we are switching between existing wallets
f created
TODD this fails because the new wallet doesn't get a public DID

awalt faber_agent.create schema_and cred_def(
zChema_name=faber_schema_name,
schema_attrs=faber_schema_attrs,

10

Issuer Initialization (3)

gets @ public DID and schema/cred def * Attributes in the schema Faber creates

awalt faber_comtainer.initialize(

u [I5]

schema_name="degree schema",

schema_attrs=[
"nams",
"date",

"degree",

Create a schems * Method in agent.py to call ACA-Py to register the

r

=chema_body = { schema and cred def.
'schema_name": schema_name,

'schema_version": wversion,

'‘attributes": schema_attirs,
I
schema_response = awalt self.admin_POST("/schemas™, schema_body)
log_jscn{json.dumps{schema_response}, label="Schema:")}

schema_1id = schema_response[“schema_1d"]

log _msg{"schema ID:", schema_id)

3
awalt asyncio.sleep(2.8)

11

Request From User to Issue Credential

 Faber handles the request from the user to issue a # define attributes to send for credential
credential faber_agent.agent.cred_attrs[faber_agent.cred_def_id] = {
"name”: "Alice smith",

"date”: "2818-B5-28",

. "degree”: “"Maths",

offer_request = { "age": "24",
"connection_id": faber_agent.agent.connection_id, "timestamp": str{int{time.time(}}),
“cred_def_id": faber_agent.cred_def_id,
"comment”: f"Offer on cred deft 1d {ftaber_agent.cred_def_id}",
"autc_remove": False, 1 _preview = {
"credential preview": cred_preview, "@type"”: CRED_PREVIEW TYPE,
“trace"”: exchange_tracing, "attributes": [

} {"name": n, "value": v}

await faber_agent.agent.admin_POST(for {n, v) in faber_agent.agent.cred_attrs[
"/issue-credential/send-offer", offer_request faber_agent.cred_def_id

)].items()

15

Request From User to Send Proof Request

indy_proof_request = {
* Faberhandles the request from the user to request a "name”: "Proof of Education”,

proof from Alice. "wersion”: "1.8",
"requested_attributes”: {

"2 _{reg_attr["name"]} _uwid": req_atir
for reg_attr in reg_attrs

proof_request_web_request = { s
"connection_id": faber_agent.agent.connection_id, requested_predicates®: {
. 7@ {req_pred['name"]}_GE_uuld": req_pred
"proof _request": indy_proof_request,) ;
]) for reg_pred in req_preds
“Trace”: exchange_tracing,)
a

awalt faber_agent.agent.admin_POST(req attrs = [

“/present-proof/send-request”, proct_request_web_request

Y 'name": "name",
'restrictions™: [{"schema_name": “"degree schema"}],
b
'name": "date”,
'restrictions™: [{"schema_name": “"degree schema"}],
b

Credential Offer Received

state = message["state”
e age[“state”] « Alice's agent uses the Agent container handler for a

credential_exchange_id = message[“credential_exchange_id"] .o]]
webhook notification related to the AIP 1.0 issue

prev_state = self.cred_state.get{credential_exchange_id)

o N i credential protocol.
if prev_state == state:
return # ignore
self.cred_state[credential_exchange_id] = state
zelf.logf
'‘Credential: state = {}, credential_exchange_id = {}".format(
state,
credential_exchange_id,
)
if state == "offer_received":
log status("#15 After recelving credential offer, send credential request™)

await self.admin_POST(

f"fissue-credential/records/{credential_exchange_id}/send-request"

14

Know Your Clients (KYC)

KYC

 KYCisthe mandatory process of
identifying and verifying the
client's identity when opening an
account and periodically over time.

* lIdentity verification practices to
assess and monitor customer risk.

* Alegalrequirementintended as an
anti-money laundering (AML)
measure

16

Challenge! Structured Transparency!

* How to protect the privacy of customers when on-boarding at a business, while
simultaneously providing transparency to the business???

* The transparency enables a business to meet the know-your-customer (KYC)
obligations they have under anti-money laundering and counter-terrorism financing

regulation (AML/CTF)

17

Bundling Problem

* While AML/CTF regulations usually require only

: - -]
PASE LATV) 14 LATVIA LETTONIE specific data attributes (e.g. name, address, date of
PASSEORT| |, S e birth) of a customer to be verified for KYC purposes,
- %. - g often much more personal data is collected and stored
L'}L”T"Cf“gif‘s“””L’ Pl | by the regulated entity.
E| * Sometimes because copies are taken of full identity
7| documents, revealing more attributes (i.e.: no elective
= : disclosure), or because more data points are
2 considered necessary to perform proper identity
-, = verification (i.e. to avoid false positives).
=3 e | sy
t#3 L . t«§ E- Ak
g i P .
%ﬂ «: Front cover Inner sheet #2 Front flyleaf Inner sheet #1 I
o Latvia Passport #4 ‘;H@”E

18

Zero-knowledge proof

A ZKP is a cryptographic method to prove to a party
that you possess some knowledge without actually
revealing the underlyinginformation.

Combined, they are able to provide:

1) Selective disclosure
2) Predicate proofs
3) Compound proofs

4) Non-correlating signatures

Alice

| know the solution,

Prove it

Challenge

Response

No idea about
solution but Alice

should know it.

19

Initial state

» User has already credentials (for example issued by the government) in his wallet

o\

e —————— Oa. Requests personal data credentials

-

Ob. Issues credentials (name, age ..)

Government

Alice

20

KYC service

1. Request for identification

F

VERIFIED

Alice

Client portal
8. Go to callback URL

with results of verificatign HTTPS 2. Redirects [attributes + callback URL)
(success or failed) - attributes are adjustable
HTTPS
(s "\ Peer-to-Peer (DIDComm)

3. Send an invitation
4. Accept the invitation

F 3

7. Verify credentials

5. Send a proof request
6. Provide the credentials

F 3

\. v/
SSI KYC Service

Questions???

