Secure Computation

Maryam Zarezadeh

Associate Researcher

maryam.zarezadeh@barkhauseninstitut.org

Some slides taken from lectures of Ran Cohen, Yehuda Lindell, Mike Rosulek
Definition:

- **Secure computation (SC)** (also known as **Secure multi-party computation (SMPC)**, **multi-party computation (MPC)**) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private.

- **SC** protocols can enable data scientists and analysts to compliantly, securely, and privately compute on **distributed data** without ever exposing or moving it.

- Researchers are making **SC** faster and easier to use for application software developers.
Scenario: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed
Scenario: Private Auction

Many parties wish to execute a private auction

- The highest bid wins
- Only the highest bid (and bidder) is revealed

Solution: use a trusted auctioneer
Secure Computation

• In the scenario the solution of an external trusted third party works
• Trusting a third party is a very strong assumption
• Can we do better?
• We would like a solution with the same security guarantees, but without using any trusted party
Secure Computation

Goal: use a protocol to emulate the trusted party
The setting

• Parties P_1, \ldots, P_n
• Party P_i has private input x_i
• The parties wish to jointly compute a function $y = f(x_1, \ldots, x_n)$
• The computation must preserve certain security properties, even if some of the parties collude and maliciously attack the protocol
• Normally, this is modeled by an external adversary \mathcal{A} that corrupts some parties and coordinates their actions
Security Requirements

- **Correctness**: parties obtain correct output (even if some parties misbehave)
- **Privacy**: only the output is learned (nothing else)
- **Independence of inputs**: parties cannot choose their inputs as a function of other parties’ inputs
- **Fairness**: if one party learns the output, then all parties learn the output
- **Guaranteed output delivery**: all honest parties learn the output
Auction Example – Security Requirements

- **Correctness**: \mathcal{A} can’t win using lower bid than the highest
- **Privacy**: \mathcal{A} learns an upper bound on all inputs, nothing else
- **Independence of inputs**: \mathcal{A} can’t bid one dollar more than the highest (honest) bid
- **Fairness**: \mathcal{A} can’t abort the auction if his bid isn’t the highest (i.e., after learning the result)
- **Guaranteed output delivery**: \mathcal{A} can’t abort (stronger than fairness, no DoS attacks)
Who is Richer?

Millionaires’ Problem

$X > Y$?!!
Secure string matching

Bob’s Genome: ACGT…

Alice’s Genome: ACTG…

Can Alice and Bob compute a function of their private data without exposing anything about their data besides the result?
Secret Sharing

s from F_p

$F_p = (Z_p, +, \cdot)$ is a field

$S \setminus s_1$ $S \setminus s_2$ \ldots $S \setminus s_n$

\gg Choose random shares s_1, \ldots, s_n from F_p s.t. $s_1 + \ldots + s_n = s$

\gg $S = \{s_1, \ldots, s_n\}$

\gg Together all the parties know S

\gg Individual party has no information about S.
Secure Addition $\gamma = x_1 + x_2 + x_3$ (assume $n=3$ parties)

No party even with unbounded power learns nothing more than γ!
Secure bit multiplication \(y = x_1 \cdot x_2 \)

\[
y = x_1 \cdot x_2 \\
= (x_{11} + x_{12}) \cdot (x_{21} + x_{22}) \\
= (x_{11} \cdot x_{21} + x_{11} \cdot x_{22} + x_{12} \cdot x_{21} + x_{12} \cdot x_{22})
\]

\[
\begin{array}{cccc}
x_1 & x_2 \\
x_{11} & x_{12} & x_{21} & x_{22} \\
x_{12} & \cdot & x_{22} & = x_{12} \cdot x_{22} \\
x_{11} & \cdot & x_{21} & = x_{11} \cdot x_{21}
\end{array}
\]
Oblivious Transfer (OT)

- **Sender** holds two bits \(x_0 \) and \(x_1 \).
- **Receiver** holds a choice bit \(b \).
- **Receiver** should learn \(x_b \), **sender** should learn **nothing**.
Secure bit multiplication $y = x_1 \cdot x_2$

P_1

$a_0 \rightarrow 1$-out-of-2 OT

$a_1 \rightarrow b$

P_2

$b \rightarrow (1-b) \cdot a_0 + b \cdot a_1 = a_b$

$a_0 = 0 \rightarrow 1$-out-of-2 OT

$a_1 = x_1 \rightarrow b = x_2$

$(1-x_2) \cdot 0 + x_2 \cdot x_1 = x_1 \cdot x_2$
How to Define Security

Option 1: property-based definition

• Define a list of security requirements for the task
• Analyze security concerns for each specific problem
• Difficult to analyze complex tasks
• How do we know if all concerns are covered?
• Definitions are application dependent (no general results, need to redefine each time).
• **Option 2: the real/ideal paradigm**

 • Whatever an adversary can achieve by attacking a real protocol can also be achieved by attacking an ideal computation involving a trusted party

 • Formalized via a simulator

 • The real/ideal model paradigm:
 • **Ideal model:** parties send inputs to a trusted party, who computes the function and sends the outputs.
 • **Real model:** parties run a real protocol with no trusted help.

 • **Informally:** a protocol is secure if any attack on a real protocol can be carried out in the ideal model.

 • Since no attacks can be carried out in the ideal model, security is implied.
The Security Definition:

For every real adversary \mathcal{A} there exists an adversary \mathcal{S} such that:

REAL

Protocol interaction

\approx

IDEAL

Trusted party
Ideal World

1) Each party sends its input to the trusted party
2) The trusted party computes $y = f(x_1, \ldots, x_n)$
3) Trusted party sends y to each party
Real World

Parties run a protocol π on inputs $(x_1, \ldots x_n)$
Simulation-Based Security
Simulation-Based Security

Distinguisher \mathcal{D}
Simulation-Based Security

Distinguisher \mathcal{D}

Adversary \mathcal{A}
Simulation-Based Security

Simulator S Distinguisher \mathcal{D} Adversary \mathcal{A}
Simulation-Based Security

The distinguisher \mathcal{D}:

- Gives inputs to parties
- Gets back output from parties and from adversary/simulator
- Guesses which world it is real/ideal

Protocol π securely computes f if $\forall \mathcal{A} \exists \mathcal{S} \forall \mathcal{D}$ distinguishing success is “small”
Sanity check

✓ Correctness
✓ Privacy
✓ Independence of inputs

✓ Fairness
✓ Guaranteed output delivery
The Definition Cont’d

A definition of an SC task involves defining:

- **Functionality**: what do we want to compute?
- **Security type**: how strong protection do we want?
- **Adversarial model**: what do we want to protect against?
- **Network model**: in what setting are we going to do it?
The Functionality

- The code of the trusted party
- Captures inevitable vulnerabilities
- Sometimes useful to let the functionality talk to the ideal-world adversary (simulator)
- We will focus on secure function evaluation (SFE), the trusted party computes $y = f(x_1, \ldots, x_n)$
Security Type

- **Computational**: a probabilistic polynomial time (PPT) distinguisher
 - The real & ideal worlds are *computationally* indistinguishable
- **Statistical**: all-powerful distinguisher, *negligible* error probability
 - The real & ideal worlds are *statistically* close
- **Perfect**: all-powerful distinguisher, *zero* error probability
 - The real & ideal worlds are *identically* distributed
Adversarial Model

• Adversarial behavior
 – Semi honest: honest-but-curious. corrupted parties follow the protocol honestly, A tries to learn more information.
 – Malicious: corrupted parties can deviate from the protocol in an arbitrary way

• Adversarial power
 – Polynomial time: the adversary is allowed to run in (probabilistic) polynomial time (and sometimes, expected polynomial time), computational security
 – Computationally unbounded: the adversary has no computational limits whatsoever, information-theoretic security
Adversarial Model

- **Adversarial corruption**
 - **Static**: the set of corrupted parties is defined before the execution of the protocol begins. Honest parties are always honest, corrupted parties are always corrupted.
 - **Adaptive**: \mathcal{A} can decide which parties to corrupt during the course of the protocol, based on information it dynamically learns.
 - **Mobile**: \mathcal{A} can jump between parties. Honest parties can become corrupted, corrupted parties can become honest again.
Communication Model

- **Point-to-point**: fully connected network of pairwise channels.
- **Broadcast**: additional broadcast channel

Message delivery:
- **Synchronous**: the protocol proceeds in rounds. Every message that is sent arrives within a known time frame
- **Asynchronous (eventual delivery)**: the adversary can impose arbitrary (finite) delay on any message
- **Fully Asynchronous**: the adversary has full control over the network, can even drop messages
Execution Environment

• **Stand alone:**
 – A single protocol execution at any given time (isolated from the rest of the world)

• **Concurrent general composition:**
 – Arbitrary protocols are executed concurrently
 – An Internet-like setting
 – Requires a strictly stronger definition
 – Captured by the *universal composability (UC)* framework
The Stand-Alone Model

One set of parties executing a single protocol in isolation
The Concurrent Model

Many parties running many protocol executions
UC real model

Environment

Arbitrary interaction

write inputs/
read outputs

Protocol interaction
UC ideal model

- Trusted party
- Environment

Arbitrary interaction

write inputs/
read outputs
UC Security

Environment

Protocol interaction

Trusted party

REAL

IDEAL
Relaxing the Definition

- Recall the ideal world (with guaranteed output delivery)
 1) Each party sends its input to the trusted party
 2) The trusted party computes $y = f(x_1, \ldots, x_n)$
 3) Trusted party sends y to each party
- This ideal world is overly ideal
- In general, fairness cannot be achieved without an honest majority
- A relaxed definition is normally considered
Security with Abort

- Ideal world without fairness and guaranteed output delivery:
 a. Each party sends its input to the trusted party
 b. The trusted party computes $y = f(x_1, \ldots, x_n)$
 c. Trusted party sends y to the adversary
 d. The adversary responds with continue/abort
 e. If continue, trusted party sends y to all parties; If abort, trusted party sends \bot to all parties
 f. Correctness, privacy, independence of inputs are satisfied
Adversarial model

• In this lecture we consider:
 – Adversary: semi honest / malicious with static corruptions
 – Synchronous P2P network with a broadcast channel
 – Stand-alone setting
 – Probabilistic polynomial time (PPT) adversary & distinguisher
 (computational security)
Secure AND: Π_{AND}

Bob sends $a \land b$ to Alice
Alice and Bob both output $a \land b$
Functionality

Alice

\(a \rightarrow a \land b \)

Bob

\(b
\rightarrow a \land b \)

F AND
• **Theorem.** Π_{AND} is indistinguishable from F_{AND} from the perspective of an semi-honest adversary.

• \exists simulator S_1, s.t. $(\text{View}_{p_1,\text{real}}, \text{Output}_{p_1,\text{real}}) \approx (\text{View}_{p_1,\text{ideal}}, \text{Output}_{p_1,\text{ideal}})$

• \exists simulator S_2, s.t. $(\text{View}_{p_2,\text{real}}, \text{Output}_{p_2,\text{real}}) \approx (\text{View}_{p_2,\text{ideal}}, \text{Output}_{p_2,\text{ideal}})$
Semi-honest vs Malicious

• Now to confuse you all...

• It is clear that any protocol that is secure in the presence of malicious adversaries is secure in the presence of semi-honest adversaries
 ◦ A malicious adversary is stronger, and can always behave semi-honestly…

• But, the simulator in the ideal model is also stronger
 ◦ It can change its input

• Does this make a difference?
A Protocol for Binary AND: $\Pi_{x \land y}$

• Input: P_1 has an input bit x and P_2 has an input bit y.
• Output: The binary value $x \land y$ for P_2 only.

• The protocol:
 1. P_1 sends P_2 its input bit x.
 2. P_2 outputs the bit $x \land y$.
Semi-honest vs Malicious

Claim. Π_{x^y} securely computes the binary AND function in the presence of malicious adversaries.

Claim. Π_{x^y} does not securely compute the binary AND function in the presence of semi-honest adversaries.
Semi-honest vs Malicious

- Fixing this absurdity
 - Allow a semi-honest adversary to also change its input
 - Arguably, this is legitimate (to choose input)
 - This is called augmented semi-honest

- Theorem:
 - Security for malicious adversaries implies security for augmented semi-honest adversaries
Private set intersection (PSI)

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>p x o</td>
<td>s o n</td>
</tr>
<tr>
<td>n r e</td>
<td>i a y</td>
</tr>
<tr>
<td>s u m</td>
<td>w r u</td>
</tr>
</tbody>
</table>
Private set intersection (PSI)

Alice: p x o
 n r e
 s u m

Bob: s o n
 i a y
 w r u
Private set intersection (PSI)

Alice

Bob

p x o

s o n

n r e

? ? ?

s u m

? r ?
Private set intersection (PSI)

Alice

Bob

n r ?
s ?

i a y

w r u
Private set intersection (PSI)

\{ \text{my phone contacts} \} \cap \{ \text{users of your service} \}
Private set intersection (PSI)

{ my phone contacts } ∩ { users of your service }
PSI on small sets (hundreds)

- private availability poll
- key agreement techniques
PSI on **small sets** (hundreds)
- private availability poll
- key agreement techniques

PSI on **large sets** (millions)
- double-registered voters
- OT extension; combinatorial tricks
PSI on **small sets** (hundreds)
- private availability poll
- key agreement techniques

PSI on **large sets** (millions)
- double-registered voters
- OT extension; combinatorial tricks

PSI on **asymmetric** sets (100 : billion)
- contact discovery; password checkup
- offline phase; leakage
PSI on **small sets** (hundreds)
- private availability poll
- key agreement techniques

PSI on **asymmetric** sets (100 : billion)
- contact discovery; password checkup
- offline phase; leakage

PSI on **large sets** (millions)
- double-registered voters
- OT extension; combinatorial tricks

Computing on the intersection
- sales statistics about intersection
- generic secure computation
Keyword Search

• **Input:**
 – Server: database \(X=\{(x_i,p_i)\} \), \(1 \leq i \leq N \)
 - \(x_i \) is a keyword
 - \(p_i \) is the payload
 – Client: search word \(w \)

• **Output:**
 – Server: nothing
 – Client:
 - \(p_i \) if \(\exists i : x_i = w \)
 - otherwise nothing
Searchable Encryption

Alice

Encrypted data

Search keyword

Encrypted files which contains keyword

Server
Private Information Retrieval (PIR)

Let $x = x_1, x_2, \ldots, x_n \in \{0,1\}^n$. The user is interested in x_i for some $i \in \{1, \ldots, n\}$.

Server: $x = x_1, x_2, \ldots, x_n \in \{0,1\}^n$

User: $i \in \{1, \ldots, n\}$
k-Server PIR

Correctness: User obtains x_i

Privacy: No *single* server gets information about i

$x \in \{0,1\}^n$

User

S_1

S_2

S_k
A machine is **oblivious** if its sequence of accessing (memory) locations is **indistinguishable** for any two inputs with the same length.

- **The server** cannot gain any information from the access pattern of **client**’s Read/Write requests.