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Definition:

➢ Secure computation (SC) (also known as Secure multi-party computation

(SMPC), multi-party computation (MPC) is a subfield of cryptography with the

goal of creating methods for parties to jointly compute a function over their inputs

while keeping those inputs private.

• SC protocols can enable data scientists and analysts to compliantly, securely, and

privately compute on distributed data without ever exposing or moving it.

• Researchers are making SC faster and easier to use for application software

developers
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Scenario: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed
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Scenario: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed

Solution: use a trusted auctioneer
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Secure Computation

• In the scenario the solution of an external trusted

third party works

• Trusting a third party is a very strong assumption

• Can we do better?

• We would like a solution with the same security

guarantees, but without using any trusted party
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Goal: use a protocol to emulate the trusted party

X  

Secure Computation
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The setting

• Parties 𝑃1,….,𝑃𝑛

• Party 𝑃𝑖 has private input 𝑥𝑖

• The parties wish to jointly compute a function 𝑦=𝑓 (𝑥1,…,𝑥𝑛 )

• The computation must preserve certain security properties, even is some of the

parties collude and maliciously attack the protocol

• Normally, this is modeled by an external adversary 𝒜 that corrupts some

parties and coordinates their actions
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Security Requirements

– Correctness: parties obtain correct output (even if some parties misbehave)

– Privacy: only the output is learned (nothing else)

– Independence of inputs: parties cannot choose their inputs as a function

of other parties’ inputs

– Fairness: if one party learns the output, then all parties learn the output

– Guaranteed output delivery: all honest parties learn the output
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Auction Example – Security Requirements

– Correctness: 𝒜 can’t win using lower bid than the highest

– Privacy: 𝒜 learns an upper bound on all inputs, nothing else

– Independence of inputs: 𝒜 can’t bid one dollar more than the highest

(honest) bid

– Fairness: 𝒜 can’t abort the auction if his bid isn’t the highest (i.e., after

learning the result)

– Guaranteed output delivery: 𝒜 can’t abort (stronger than

fairness, no DoS attacks)
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Who is Richer?

Millionaires’ Problem 

X = Y =

X > Y ?!!
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Secure string matching
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Bob’s Genome: ACGT…
Alice’s Genome: ACTG…

Can Alice and Bob compute a function of their private data without

exposing anything about their data besides the result?



Secret Sharing  

S\s1 S\s2

S \ sn
…

Fp = (Zp , +, ) is a field 

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

>> Together all the parties know S

>> Individual party has no information about S. 

s from Fp

…….…….

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

s from Fp

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

s from Fp

S\s1 S\s2

S \ sn
…

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

S\s1 S\s2

S \ sn
…

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }
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Secure Addition y = x1+x2+x3 (assume n=3 parties)

x1
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P2

P3

x2 x3

x11 + +

+ +

+ +

=

=

=

Pi

y = s1 + s2 + s3

The same is done for all Pi
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No party even with unbounded power learns 

nothing more than y !
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Secure bit multiplication y = x1  x2

x1P1

P
2

x2
P
2

x12 



x11 x12 x21 x22

x11

x22

x21

y = x1  x2

= (x11 + x12 )(x21 + x22 )
= (x11x21 + x11x22 + x12x21 + x12x22)

= x12x22

= x11x21
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Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥0

𝑥1

• Sender holds two bits 𝑥0 and 𝑥1.

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥𝑏, sender should learn nothing. 

Sender
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Secure bit multiplication y = x1  x2

P1 P2

1-out-of-2

OT

a0 =0

a1

b

(1-b)a0 + ba1 = ab

1-out-of-2

OT

b=x2

(1- x2) 0 + x2  x1 =x1x2
a1 = x1

a0

16



Option 1: property-based definition

• Define a list of security requirements for the task

• Analyze security concerns for each specific problem

• Difficult to analyze complex tasks

• How do we know if all concerns are covered?

• Definitions are application dependent (no general results, need to 

redefine each time).

How to Define Security
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• Option 2: the real/ideal paradigm

• Whatever an adversary can achieve by attacking a real protocol can also be achieved by

attacking an ideal computation involving a trusted party

• Formalized via a simulator

• The real/ideal model paradigm:

• Ideal model: parties send inputs to a trusted party, who computes the function 

and sends the outputs.

• Real model: parties run a real protocol with no trusted help.

• Informally: a protocol is secure if any attack on a real protocol can be carried out 

in the ideal model.

• Since no attacks can be carried out in the ideal model, security is implied.
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IDEALREAL

Trusted party

Protocol

interaction

For every real 

adversary 𝒜
there exists an

adversary 𝒮



The Security Definition:
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Ideal World

1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦= 𝑓(𝑥1, … ,𝑥𝑛)

3) Trusted party sends 𝑦 to each party
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Real World

Parties run a protocol 𝜋 on inputs (𝑥1, … ,𝑥𝑛 )
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Simulation-Based Security
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Simulation-Based Security

≈

Distinguisher𝒟 23



Simulation-Based Security

≈

Distinguisher𝒟 Adversary𝒜 24



Simulation-Based Security

≈

Distinguisher𝒟Simulator 𝒮 Adversary𝒜 25



Simulation-Based Security

≈

The distinguisher 𝒟:

• Gives inputs to parties

• Gets back output from parties and from adversary/simulator

• Guesses which world it is real/ideal

Protocol 𝜋 securely computes 𝑓 if ∀𝒜 ∃𝒮 ∀𝒟 distinguishing success is “small”
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Sanity check

≈

✓ Fairness

✓ Guaranteed output delivery

✓Correctness

✓Privacy

✓ Independence of inputs
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The Definition Cont’d

A definition of an SC task involves defining:

• Functionality: what do we want to compute?

• Security type: how strong protection do we want?

• Adversarial model: what do we want to protect against?

• Network model: in what setting are we going to do it?
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The Functionality

• The code of the trusted party

• Captures inevitable vulnerabilities

• Sometimes useful to let the functionality talk to the  ideal-world 

adversary (simulator)

• We will focus on secure function evaluation (SFE),  the trusted 

party computes 𝑦= 𝑓 (𝑥1 , … ,𝑥𝑛 )
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Security Type

• Computational: a probabilistic polynomial time (PPT) distinguisher

– The real & ideal worlds are computationally indistinguishable

• Statistical: all-powerful distinguisher,  negligible error probability

– The real & ideal worlds are statistically close

• Perfect: all-powerful distinguisher,  zero error probability

– The real & ideal worlds are identically distributed

30



Adversarial Model

• Adversarial behavior

– Semi honest: honest-but-curious. corrupted parties  follow the 

protocol honestly, 𝒜 tries to learn more  information.

– Malicious: corrupted parties can deviate from the  protocol 

in an arbitrary way

• Adversarial power

– Polynomial time: the adversary is allowed to run in

(probabilistic) polynomial time (and sometimes, expected

polynomial time), computational security

– Computationally unbounded: the adversary has no

computational limits whatsoever, information-theoretic security
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Adversarial Model

• Adversarial corruption

– Static: the set of corrupted parties is defined before the execution of the

protocol begins. Honest parties are always honest, corrupted parties are always

corrupted

– Adaptive: 𝒜 can decide which parties to corrupt during the course of the

protocol, based on information it dynamically learns

– Mobile: 𝒜 can jump between parties. Honest parties can become

corrupted, corrupted parties can become honest again
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Communication Model

• Point-to-point: fully connected network of pairwise channels.

• Broadcast: additional broadcast channel

• Message delivery:

– Synchronous: the protocol proceeds in rounds. Every message that

is sent arrives within a known time frame

– Asynchronous (eventual delivery): the adversary can impose

arbitrary (finite) delay on any message

– Fully Asynchronous: the adversary has full control over the

network, can even drop messages
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Execution Environment

• Stand alone:

– A single protocol execution at any given time  (isolated from the 

rest of the world)

• Concurrent general composition:

– Arbitrary protocols are executed concurrently

– An Internet-like setting

– Requires a strictly stronger definition

– Captured by the universal composability (UC) framework
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The Stand-Alone Model

Alice Bob

One set of parties executing a single protocol in isolation.
a
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The Concurrent Model

Many parties running many protocol executions.

Alice Bob
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UC real model

Protocol

interaction

Arbitrary

interaction

write inputs/

read outputs

Environment
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UC ideal model
Environment

Trusted party

Arbitrary

interaction

write inputs/

read outputs
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UC Security

Environment

?

IDEALREAL

Protocol

interaction

Trusted party
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Relaxing the Definition

• Recall the ideal world (with guaranteed output delivery)

1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦= 𝑓 (𝑥1, … ,𝑥𝑛)

3) Trusted party sends 𝑦 to each party

• This ideal world is overly ideal

• In general, fairness cannot be achieved without an honest 

majority

• A relaxed definition is normally considered
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Security with Abort

• Ideal world without fairness and guaranteed output delivery:

a. Each party sends its input to the trusted party

b. The trusted party computes 𝑦= 𝑓(𝑥1, … ,𝑥𝑛)

c. Trusted party sends 𝑦 to the adversary

d. The adversary responds with continue/abort

e. If continue, trusted party sends 𝑦 to all parties  If abort, 
trusted party sends ⊥ to all parties

f. Correctness, privacy, independence of inputs are satisfied
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Adversarial model

• In this lecture we consider:

– Adversary: semi honest / malicious with static corruptions

– Synchronous P2P network with a broadcast channel

– Stand-alone setting

– Probabilistic polynomial time (PPT) adversary & distinguisher

(computational security)
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Secure AND: ΠAND

Alice
Bob

b

F1-out-of-2 OT

a ∧0

a ∧1

b

a ∧b

a

Bob sends a ∧b to Alice

Alice and Bob both output a ∧ b
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Functionality

FAND

𝑎 b

𝑎 ∧ 𝑏 𝑎 ∧ 𝑏

Alice Bob
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• Theorem . ΠAND is indistinguishable from FAND from the perspective of an

semi-honest adversary.

• ∃ simulator S1,  s.t. (ViewP1, real
, OutputP1,real

) ≈ (ViewP1, ideal
, OutputP1,ideal

)

• ∃ simulator S2,  s.t. (ViewP2, real
, OutputP2, real

) ≈ (ViewP2, ideal
, OutputP2, ideal

)

45



Semi-honest vs Malicious

⦁ Now to confuse you all…

⦁ It is clear that any protocol that is secure in the presence of malicious adversaries 

is secure in the presence of semi-honest adversaries

◦ A malicious adversary is stronger, and can always behave semi-honestly…

⦁ But, the simulator in the ideal model is also stronger

◦ It can change its input

⦁ Does this make a difference?
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A Protocol for Binary AND: Πx^y

• Input: 𝑃1 has an input bit 𝑥 and 𝑃2 has an input bit y. 

• Output: The binary value 𝑥 ∧ 𝑦 for 𝑃2 only. 

• The protocol: 

1. 𝑃1 sends 𝑃2 its input bit 𝑥. 

2. 𝑃2 outputs the bit 𝑥 ∧ 𝑦.
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Claim. Πx^y securely computes the binary AND function in the presence of 
malicious adversaries.

Claim. Πx^y does not securely compute the binary AND function in the 
presence of semi-honest adversaries. 

Semi-honest vs Malicious
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Semi-honest vs Malicious

⦁ Fixing this absurdity

◦ Allow a semi-honest adversary to also change its input

◦ Arguably, this is legitimate (to choose input)

◦ This is called augmented semi-honest

⦁ Theorem:

◦ Security for malicious adversaries implies security for

augmented semi-hones adversaries
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Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u
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Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u
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Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u

? ? ?

? ?
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Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u

? ?

?

? ?
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{my phonea contacts} ∩{users of your service}

Private set intersection (PSI)
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{my phonea contacts} ∩{users of your service}

Private set intersection (PSI)
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PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques
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PSI on large sets (millions)

▪ double-registered voters

▪ OT extension; combinatorial tricks

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques
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PSI on asymmetric sets (100 : billion)

▪ contact discovery; password checkup

▪ offiine phase; leakage

PSI on large sets (millions)

▪ double-registered voters

▪ OT extension; combinatorial tricks

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques
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PSI on asymmetric sets (100 : billion)

▪ contact discovery; password checkup

▪ offiine phase; leakage

PSI on large sets (millions)

▪ double-registered voters

▪ OT extension; combinatorial tricks

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques

Computing on the intersection

▪ sales statistics about intersection

▪ generic secure computation
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Keyword Search

• Input:

– Server:  database X={ ((xi,pi)) } , 1 ≤ i ≤ N

• xi is a keyword 

• pi is the payload

– Client:  search word w

• Output:

– Server: nothing

– Client:

• pi if  i : xi = w

• otherwise nothing

Client output: (xj ,pj ) iff w=xj

…(x1,p1) (xn,pn )(x2,p2)Server:

Client:
w
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Alice

Encrypted data

Search keyword

Server

Encrypted files which 

contains keyword

Searchable Encryption

61



Private Information Retrieval (PIR)

x=x1,x2 , . . ., xn {0,1}n

Server

i {1,…n}

xi

User

i j




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k-Server PIR

Correctness: User obtains xi

Privacy: No single server gets 

information about i

User

S1

x {0,1}n

S2
x {0,1}n

i

x {0,1}n

Sk






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 A machine is oblivious if its sequence of accessing (memory) locations is 

indistinguishable for any two inputs with the same length.

 The server cannot gain any information from the access pattern of client’s Read/ 

Write requests.

Client Server

Read (i)

Write (i, data)

Oblivious Random Access Machine (ORAM)
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