
Secure Computation

Maryam Zarezadeh

maryam.zarezadeh@barkhauseninstitut.org

Associate Researcher

Some slides taken from lectures of Ran Cohen, Yehuda Lindell, Mike Rosulek

Definition:

➢ Secure computation (SC) (also known as Secure multi-party computation

(SMPC), multi-party computation (MPC) is a subfield of cryptography with the

goal of creating methods for parties to jointly compute a function over their inputs

while keeping those inputs private.

• SC protocols can enable data scientists and analysts to compliantly, securely, and

privately compute on distributed data without ever exposing or moving it.

• Researchers are making SC faster and easier to use for application software

developers

2

Scenario: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed

3

Scenario: Private Auction

Many parties wish to execute a private auction

• The highest bid wins

• Only the highest bid (and bidder) is revealed

Solution: use a trusted auctioneer

4

Secure Computation

• In the scenario the solution of an external trusted

third party works

• Trusting a third party is a very strong assumption

• Can we do better?

• We would like a solution with the same security

guarantees, but without using any trusted party

5

Goal: use a protocol to emulate the trusted party

X

Secure Computation

6

The setting

• Parties 𝑃1,….,𝑃𝑛

• Party 𝑃𝑖 has private input 𝑥𝑖

• The parties wish to jointly compute a function 𝑦=𝑓 (𝑥1,…,𝑥𝑛)

• The computation must preserve certain security properties, even is some of the

parties collude and maliciously attack the protocol

• Normally, this is modeled by an external adversary 𝒜 that corrupts some

parties and coordinates their actions

7

Security Requirements

– Correctness: parties obtain correct output (even if some parties misbehave)

– Privacy: only the output is learned (nothing else)

– Independence of inputs: parties cannot choose their inputs as a function

of other parties’ inputs

– Fairness: if one party learns the output, then all parties learn the output

– Guaranteed output delivery: all honest parties learn the output

8

Auction Example – Security Requirements

– Correctness: 𝒜 can’t win using lower bid than the highest

– Privacy: 𝒜 learns an upper bound on all inputs, nothing else

– Independence of inputs: 𝒜 can’t bid one dollar more than the highest

(honest) bid

– Fairness: 𝒜 can’t abort the auction if his bid isn’t the highest (i.e., after

learning the result)

– Guaranteed output delivery: 𝒜 can’t abort (stronger than

fairness, no DoS attacks)

9

Who is Richer?

Millionaires’ Problem

X = Y =

X > Y ?!!

10

Secure string matching

11

Bob’s Genome: ACGT…
Alice’s Genome: ACTG…

Can Alice and Bob compute a function of their private data without

exposing anything about their data besides the result?

Secret Sharing

S\s1 S\s2

S \ sn
…

Fp = (Zp , +, ) is a field

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

>> Together all the parties know S

>> Individual party has no information about S.

s from Fp

…….…….

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

s from Fp

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

s from Fp

S\s1 S\s2

S \ sn
…

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

S\s1 S\s2

S \ sn
…

>> Choose random shares s1,..sn

from Fp s. t. s1 + …+ sn = s

>> S = {s1,.. sn }

12

Secure Addition y = x1+x2+x3 (assume n=3 parties)

x1

P1

P2

P3

x2 x3

x11 + +

+ +

+ +

=

=

=

Pi

y = s1 + s2 + s3

The same is done for all Pi

x11 x12 x13 x21 x22 x23 x31 x32 x33

x12

x13

x21

x22

x23

x31

x321

x33

s1

s3

No party even with unbounded power learns

nothing more than y !

s2

x1

P1 x11

x11 x12 x13

P2

P3

x12

x13

x1

P1 x11

x11 x12 x13

P2
x12

x1

P1 x11

x11 x12 x13

13

Secure bit multiplication y = x1  x2

x1P1

P
2

x2
P
2

x12 



x11 x12 x21 x22

x11

x22

x21

y = x1  x2

= (x11 + x12)(x21 + x22)
= (x11x21 + x11x22 + x12x21 + x12x22)

= x12x22

= x11x21

14

Oblivious Transfer (OT)

Receiver

Choice bit: 𝒃
𝑥0

𝑥1

• Sender holds two bits 𝑥0 and 𝑥1.

• Receiver holds a choice bit 𝑏.

• Receiver should learn 𝑥𝑏, sender should learn nothing.

Sender

15

Secure bit multiplication y = x1  x2

P1 P2

1-out-of-2

OT

a0 =0

a1

b

(1-b)a0 + ba1 = ab

1-out-of-2

OT

b=x2

(1- x2) 0 + x2  x1 =x1x2
a1 = x1

a0

16

Option 1: property-based definition

• Define a list of security requirements for the task

• Analyze security concerns for each specific problem

• Difficult to analyze complex tasks

• How do we know if all concerns are covered?

• Definitions are application dependent (no general results, need to

redefine each time).

How to Define Security

17

• Option 2: the real/ideal paradigm

• Whatever an adversary can achieve by attacking a real protocol can also be achieved by

attacking an ideal computation involving a trusted party

• Formalized via a simulator

• The real/ideal model paradigm:

• Ideal model: parties send inputs to a trusted party, who computes the function

and sends the outputs.

• Real model: parties run a real protocol with no trusted help.

• Informally: a protocol is secure if any attack on a real protocol can be carried out

in the ideal model.

• Since no attacks can be carried out in the ideal model, security is implied.
18

IDEALREAL

Trusted party

Protocol

interaction

For every real

adversary 𝒜
there exists an

adversary 𝒮



The Security Definition:

19

Ideal World

1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦= 𝑓(𝑥1, … ,𝑥𝑛)

3) Trusted party sends 𝑦 to each party

20

Real World

Parties run a protocol 𝜋 on inputs (𝑥1, … ,𝑥𝑛)

21

Simulation-Based Security

22

Simulation-Based Security

≈

Distinguisher𝒟 23

Simulation-Based Security

≈

Distinguisher𝒟 Adversary𝒜 24

Simulation-Based Security

≈

Distinguisher𝒟Simulator 𝒮 Adversary𝒜 25

Simulation-Based Security

≈

The distinguisher 𝒟:

• Gives inputs to parties

• Gets back output from parties and from adversary/simulator

• Guesses which world it is real/ideal

Protocol 𝜋 securely computes 𝑓 if ∀𝒜 ∃𝒮 ∀𝒟 distinguishing success is “small”

26

Sanity check

≈

✓ Fairness

✓ Guaranteed output delivery

✓Correctness

✓Privacy

✓ Independence of inputs

27

The Definition Cont’d

A definition of an SC task involves defining:

• Functionality: what do we want to compute?

• Security type: how strong protection do we want?

• Adversarial model: what do we want to protect against?

• Network model: in what setting are we going to do it?

28

The Functionality

• The code of the trusted party

• Captures inevitable vulnerabilities

• Sometimes useful to let the functionality talk to the ideal-world

adversary (simulator)

• We will focus on secure function evaluation (SFE), the trusted

party computes 𝑦= 𝑓 (𝑥1 , … ,𝑥𝑛)

29

Security Type

• Computational: a probabilistic polynomial time (PPT) distinguisher

– The real & ideal worlds are computationally indistinguishable

• Statistical: all-powerful distinguisher, negligible error probability

– The real & ideal worlds are statistically close

• Perfect: all-powerful distinguisher, zero error probability

– The real & ideal worlds are identically distributed

30

Adversarial Model

• Adversarial behavior

– Semi honest: honest-but-curious. corrupted parties follow the

protocol honestly, 𝒜 tries to learn more information.

– Malicious: corrupted parties can deviate from the protocol

in an arbitrary way

• Adversarial power

– Polynomial time: the adversary is allowed to run in

(probabilistic) polynomial time (and sometimes, expected

polynomial time), computational security

– Computationally unbounded: the adversary has no

computational limits whatsoever, information-theoretic security

31

Adversarial Model

• Adversarial corruption

– Static: the set of corrupted parties is defined before the execution of the

protocol begins. Honest parties are always honest, corrupted parties are always

corrupted

– Adaptive: 𝒜 can decide which parties to corrupt during the course of the

protocol, based on information it dynamically learns

– Mobile: 𝒜 can jump between parties. Honest parties can become

corrupted, corrupted parties can become honest again

32

Communication Model

• Point-to-point: fully connected network of pairwise channels.

• Broadcast: additional broadcast channel

• Message delivery:

– Synchronous: the protocol proceeds in rounds. Every message that

is sent arrives within a known time frame

– Asynchronous (eventual delivery): the adversary can impose

arbitrary (finite) delay on any message

– Fully Asynchronous: the adversary has full control over the

network, can even drop messages

33

Execution Environment

• Stand alone:

– A single protocol execution at any given time (isolated from the

rest of the world)

• Concurrent general composition:

– Arbitrary protocols are executed concurrently

– An Internet-like setting

– Requires a strictly stronger definition

– Captured by the universal composability (UC) framework

34

The Stand-Alone Model

Alice Bob

One set of parties executing a single protocol in isolation.
a

35

The Concurrent Model

Many parties running many protocol executions.

Alice Bob

36

UC real model

Protocol

interaction

Arbitrary

interaction

write inputs/

read outputs

Environment

37

UC ideal model
Environment

Trusted party

Arbitrary

interaction

write inputs/

read outputs

38

UC Security

Environment

?

IDEALREAL

Protocol

interaction

Trusted party

39

Relaxing the Definition

• Recall the ideal world (with guaranteed output delivery)

1) Each party sends its input to the trusted party

2) The trusted party computes 𝑦= 𝑓 (𝑥1, … ,𝑥𝑛)

3) Trusted party sends 𝑦 to each party

• This ideal world is overly ideal

• In general, fairness cannot be achieved without an honest

majority

• A relaxed definition is normally considered

40

Security with Abort

• Ideal world without fairness and guaranteed output delivery:

a. Each party sends its input to the trusted party

b. The trusted party computes 𝑦= 𝑓(𝑥1, … ,𝑥𝑛)

c. Trusted party sends 𝑦 to the adversary

d. The adversary responds with continue/abort

e. If continue, trusted party sends 𝑦 to all parties If abort,
trusted party sends ⊥ to all parties

f. Correctness, privacy, independence of inputs are satisfied

41

Adversarial model

• In this lecture we consider:

– Adversary: semi honest / malicious with static corruptions

– Synchronous P2P network with a broadcast channel

– Stand-alone setting

– Probabilistic polynomial time (PPT) adversary & distinguisher

(computational security)

42

Secure AND: ΠAND

Alice
Bob

b

F1-out-of-2 OT

a ∧0

a ∧1

b

a ∧b

a

Bob sends a ∧b to Alice

Alice and Bob both output a ∧ b

43

Functionality

FAND

𝑎 b

𝑎 ∧ 𝑏 𝑎 ∧ 𝑏

Alice Bob

44

• Theorem . ΠAND is indistinguishable from FAND from the perspective of an

semi-honest adversary.

• ∃ simulator S1, s.t. (ViewP1, real
, OutputP1,real

) ≈ (ViewP1, ideal
, OutputP1,ideal

)

• ∃ simulator S2, s.t. (ViewP2, real
, OutputP2, real

) ≈ (ViewP2, ideal
, OutputP2, ideal

)

45

Semi-honest vs Malicious

⦁ Now to confuse you all…

⦁ It is clear that any protocol that is secure in the presence of malicious adversaries

is secure in the presence of semi-honest adversaries

◦ A malicious adversary is stronger, and can always behave semi-honestly…

⦁ But, the simulator in the ideal model is also stronger

◦ It can change its input

⦁ Does this make a difference?

46

A Protocol for Binary AND: Πx^y

• Input: 𝑃1 has an input bit 𝑥 and 𝑃2 has an input bit y.

• Output: The binary value 𝑥 ∧ 𝑦 for 𝑃2 only.

• The protocol:

1. 𝑃1 sends 𝑃2 its input bit 𝑥.

2. 𝑃2 outputs the bit 𝑥 ∧ 𝑦.

47

Claim. Πx^y securely computes the binary AND function in the presence of
malicious adversaries.

Claim. Πx^y does not securely compute the binary AND function in the
presence of semi-honest adversaries.

Semi-honest vs Malicious

48

Semi-honest vs Malicious

⦁ Fixing this absurdity

◦ Allow a semi-honest adversary to also change its input

◦ Arguably, this is legitimate (to choose input)

◦ This is called augmented semi-honest

⦁ Theorem:

◦ Security for malicious adversaries implies security for

augmented semi-hones adversaries

49

Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u

50

Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u

51

Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u

? ? ?

? ?

52

Private set intersection (PSI)

Alice Bob

p x o s o n

n r e i a y

s u m w r u

? ?

?

? ?

53

{my phonea contacts} ∩{users of your service}

Private set intersection (PSI)

54

{my phonea contacts} ∩{users of your service}

Private set intersection (PSI)

55

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques

56

PSI on large sets (millions)

▪ double-registered voters

▪ OT extension; combinatorial tricks

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques

57

PSI on asymmetric sets (100 : billion)

▪ contact discovery; password checkup

▪ offiine phase; leakage

PSI on large sets (millions)

▪ double-registered voters

▪ OT extension; combinatorial tricks

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques

58

PSI on asymmetric sets (100 : billion)

▪ contact discovery; password checkup

▪ offiine phase; leakage

PSI on large sets (millions)

▪ double-registered voters

▪ OT extension; combinatorial tricks

PSI on small sets (hundreds)

▪ private availability poll

▪ key agreement techniques

Computing on the intersection

▪ sales statistics about intersection

▪ generic secure computation

59

Keyword Search

• Input:

– Server: database X={ ((xi,pi)) } , 1 ≤ i ≤ N

• xi is a keyword

• pi is the payload

– Client: search word w

• Output:

– Server: nothing

– Client:

• pi if  i : xi = w

• otherwise nothing

Client output: (xj ,pj) iff w=xj

…(x1,p1) (xn,pn)(x2,p2)Server:

Client:
w

60

Alice

Encrypted data

Search keyword

Server

Encrypted files which

contains keyword

Searchable Encryption

61

Private Information Retrieval (PIR)

x=x1,x2 , . . ., xn {0,1}n

Server

i {1,…n}

xi

User

i j





62

k-Server PIR

Correctness: User obtains xi

Privacy: No single server gets

information about i

User

S1

x {0,1}n

S2
x {0,1}n

i

x {0,1}n

Sk







63

 A machine is oblivious if its sequence of accessing (memory) locations is

indistinguishable for any two inputs with the same length.

 The server cannot gain any information from the access pattern of client’s Read/

Write requests.

Client Server

Read (i)

Write (i, data)

Oblivious Random Access Machine (ORAM)

64

	Slide 1: Secure Computation
	Slide 2: Definition:
	Slide 3: Scenario: Private Auction
	Slide 4: Scenario: Private Auction
	Slide 5: Secure Computation
	Slide 6: Secure Computation
	Slide 7: The setting
	Slide 8: Security Requirements
	Slide 9: Auction Example – Security Requirements
	Slide 10: Who is Richer?
	Slide 11: Secure string matching
	Slide 12: Secret Sharing
	Slide 13: Secure Addition y = x1+x2+x3 (assume n=3 parties)
	Slide 14: Secure bit multiplication y = x1  x2
	Slide 15: Oblivious Transfer (OT)
	Slide 16: Secure bit multiplication y = x1  x2
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Ideal World
	Slide 21: Real World
	Slide 22: Simulation-Based Security
	Slide 23: Simulation-Based Security
	Slide 24: Simulation-Based Security
	Slide 25: Simulation-Based Security
	Slide 26: Simulation-Based Security
	Slide 27: Sanity check
	Slide 28: The Definition Cont’d
	Slide 29: The Functionality
	Slide 30: Security Type
	Slide 31: Adversarial Model
	Slide 32: Adversarial Model
	Slide 33: Communication Model
	Slide 34: Execution Environment
	Slide 35: The Stand-Alone Model
	Slide 36: The Concurrent Model
	Slide 37: UC real model
	Slide 38
	Slide 39: UC Security
	Slide 40: Relaxing the Definition
	Slide 41: Security with Abort
	Slide 42: Adversarial model
	Slide 43: Secure AND: ΠAND
	Slide 44: Functionality
	Slide 45
	Slide 46: Semi-honest vs Malicious
	Slide 47: A Protocol for Binary AND: Πx^y
	Slide 48: Semi-honest vs Malicious
	Slide 49: Semi-honest vs Malicious
	Slide 50: Private set intersection (PSI)
	Slide 51: Private set intersection (PSI)
	Slide 52: Private set intersection (PSI)
	Slide 53: Private set intersection (PSI)
	Slide 54: Private set intersection (PSI)
	Slide 55: Private set intersection (PSI)
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Keyword Search
	Slide 61
	Slide 62
	Slide 63: k-Server PIR
	Slide 64: Oblivious Random Access Machine (ORAM)

