
Covert-channel-resistant Congestion Control for
Traffic Normalization in Uncontrolled Networks

Martin Byrenheid
Technische Universität Dresden

Privacy and IT Security
martin.byrenheid@tu-dresden.de

Michael Rossberg and Guenter Schaefer
Technische Universität Ilmenau

Telematics and Computer Networks
{michael.rossberg,guenter.schaefer}@tu-ilmenau.de

Robert Dorn
secunet Security Networks AG

robert.dorn@secunet.com

Abstract—Traffic normalization, i.e. enforcing a constant
stream of fixed-length packets, is a well-known measure to
completely prevent attacks based on traffic analysis. In simple
configurations, the enforced traffic rate can be statically config-
ured by a human operator, but in large virtual private networks
(VPNs) the traffic pattern of many connections may need to be
adjusted whenever the overlay topology or the transport capacity
of the underlying infrastructure changes.
We propose a rate-based congestion control mechanism for
automatic adjustment of traffic patterns that does not leak
any information about the actual communication. Overly strong
rate throttling in response to packet loss is avoided, as the
control mechanism does not change the sending rate immediately
when a packet loss was detected. Instead, an estimate of the
current packet loss rate is obtained and the sending rate is
adjusted proportionally. We evaluate our control scheme based
on a measurement study in a local network testbed. The results
indicate that the proposed approach avoids network congestion,
enables protected TCP flows to achieve an increased goodput,
and yet ensures appropriate traffic flow confidentiality.

I. INTRODUCTION

As large companies and government agencies increasingly rely
on the computer networks to transfer confidential information,
they also become more attractive targets for espionage attacks.
Recent revelations show that intelligence agencies perform
traffic analysis on selected targets even on a global scale [1].

While most state-of-the-art methods in network security
concentrate on the confidentiality and integrity of message
contents, they leave protection against attacks based on pure
traffic analysis (so-called traffic flow confidentiality, TFC) out
of scope. Yet, studies, like [2], show that an eavesdropper
may still be able to identify communicating parties and type
of exchanged content by simply learning about traffic patterns
of encrypted packets. In case of a more elaborate attack, e.g.
by deploying a compromised keyboard [3] or Trojan Horse
in a virtual private network (VPN), an attacker may even use
intentionally generated traffic patterns to bypass mandatory
encryption and leak information to a colluding eavesdropper
in the open Internet, thus realizing a covert channel.

Due to their high significance in high security scenarios,
we will concentrate on the context of VPNs within this paper.
Fig. 1 shows an example for such an attack in a VPN, where
a compromised node (labeled insider) in a protected network
area A systematically sends packets either to a node in area B
or C to transmit 0 or 1, respectively. The eavesdropper then

Figure 1. Scenario: espionage attack on a VPN utilizing covert channels

infers the data from the destination address of each packet.
However, the destination address is just one of several covert
channels that have been found in IP networks. For a taxonomy
of currently known covert channels in computer networks, the
reader is referred to the recent work by Wendzel et al. [4].

A frequently proposed countermeasure to mitigate covert
channels is the automated detection of their exploitation [5],
[6], [7], [8]. Although detection seems attractive because of
its comparatively low overhead, it has three major drawbacks:
First, it cannot prevent covert channel attacks completely, as
a certain number of packets need to be observed before an
attack can be detected reliably. Second, no reasonable upper
bound on the bandwidth of the remaining undetectable covert
channel can be proven. Third, an automated detection offers no
protection against passive observation of patterns in legitimate
traffic, i.e. TFC in scenarios without an insider.

Achieving perfect resilience against traffic analysis requires
normalizing all data traffic by padding packets to equal length,
creating cover traffic and normalizing header fields. This
perfect approach is often considered impractical due to its
high overhead. However, it is possible to reduce the overhead
in a controlled manner by utilizing mode security [9], which
still allows to obtain tight upper bounds for potentially leaked
information.

However, no matter if mode security was enabled or not, a
very practical problem remains: When normalized traffic flows
are sent over dynamic networks, such as the Internet, it must be
possible to adjust the traffic pattern at runtime in order to react
to changed network conditions. Without loss of generality,
we consider multiple gateways forming a VPN. Every pair
of gateways sends encrypted packets with fixed length and
normalized header fields at a fixed time interval, generating
dummy packets when necessary. The length of the packets as



Figure 2. Example where a link failure leads to a decrease of the bandwidth
from 100 Mbit/s to as few as 5 Mbit/s: If the consumed bandwidth of gateway
A is higher than 5 Mbit/s, the bottleneck link will be overloaded.

Figure 3. Example illustrating a major scalability problem due to static traffic
normalization: If node D establishes a connection with node A, the bandwidth
consumed by node B and C must be reduced to avoid congestion at the uplink
of node A.

well as the transmission interval define the consumed network
bandwidth. When such a network is set up, one must conse-
quently select a consumed bandwidth that meets throughput
demands while also avoiding network congestion. In dynamic
networks however, selecting the consumed bandwidth a priori
in a manner that congestion is entirely avoided is impossible in
general. Fig. 2 and Fig. 3 show examples for situations where
congestion may occur in our setting.

The consequences of congestion are a higher latency, more
jitter and packet drops. The latter in turn will throttle TCP
connections, including those transported within the VPN-
protected stream. In traditional VPNs without traffic normal-
ization, the automatic throttling of the protected TCP streams
in response to packet loss will also reduce the traffic sent
between the gateways, therefore avoiding further congestion.
If traffic normalization is applied however, any throttling of the
protected flows will only result in a proportional amount of
additional cover traffic being generated in order to conceal the
pattern of the protected traffic. Therefore, the congestion will
not vanish, and a severe decrease of TCP efficiency will be
a direct consequence. Furthermore, due to the higher packet
loss, latency and jitter caused by an appropriate amount of
cover traffic, also real-time traffic like VoIP connections will
be negatively affected.

To the best of our knowledge there is no research ex-
amining this condition, yet. Thus, we contribute a first ef-
fective mechanism to perform network congestion control,
without the possibility of leaking information. This is an
important prerequisite for ensuring traffic-flow-confidentiality
in Internet-like networking scenarios. In a measurement study
we evaluated a prototype implementation under reproducible
conditions within a testbed.

The rest of the paper is structured as follows: the following
section will give details on objectives, adversary model and
related work (Sec. II), before Sec. IV describes our novel

approach to congestion avoidance. Sec. V discusses the eval-
uation. The paper closes with a conclusion and outlook.

II. SYSTEM OBJECTIVES & ADVERSARY MODEL

A traffic-flow-confidentiality-aware scheme to control the
bandwidth consumed by VPNs, should meet the following
objectives:
• Utilization of available bandwidth: While inappropriate

bandwidth consumption leading to congestion must be
avoided, restricting capacity if there is still network
bandwidth available may also be undesirable. Thus, the
mechanism shall utilize the available bandwidth as best
as possible, thereby maximizing the goodput of protected
TCP connections.

• Responsiveness: VPN-protected TCP traffic will quickly
be rate-controlled in response to packet loss. As it is
impossible to modify the TCP behavior all client devices,
the scheme shall react to network congestion timely.

• Avoid information leakage: The scheme must not reveal
information about the actual traffic between protected
networks. Consequently, adaptation needs to be done
solely based on characteristics of the public network.

All in all, there is the technical need to utilize the available
bandwidth as best as possible, while quickly reacting to
changes. At the same time there must be no influence of clients
in protected networks on the rate of the encrypted flow, as this
would allow insiders to establish covert channels.

Adversary Model

Like pointed out already, we consider a federation of
network sites being connected over a shared infrastructure,
such as the Internet. Each site is protected by a VPN node
that acts as gateway to the other sites and uses encryption
and traffic normalization to conceal actual data transfers. The
VPN nodes are the only devices that have access to the shared
infrastructure and every VPN node only supports transmitting
packets to other VPN nodes.

As already indicated by Fig. 1, we consider a strong form
of attacks on traffic flow confidentiality, i.e. by a combination
of an insider and an eavesdropper. The insider has access
to confidential information that it wants to transmit to the
eavesdropper by sending IP packets with noticeable traffic
patterns. The insider may be able to corrupt every other node
in the protected network, except the VPN gateways.

To consider the worst case, we assume the eavesdropper to
be able to directly observe the interfaces that connect each
VPN gateway to the shared network. Due to the model, the
eavesdropper is unaffected by network dynamics such as jitter
or packet loss. However, we require the eavesdropper to be
computationally bounded in the sense that it cannot decrypt
any packet sent from a VPN gateway. While the rest of the
paper assumes each protected network to consist of one or
more physical devices, our model is also applicable to so-
called road warriors having a single VPN-capable device
which runs multiple (untrustworthy) processes.



III. RELATED WORK

In the following, we start with a short survey of existing
countermeasures against traffic analysis and their adaptiveness
to network congestion. Subsequently, we discuss potentially
relevant congestion control schemes.

A. Congestion-Aware Countermeasures against Traffic Analy-
sis

While many countermeasures against covert channels in
computer networks aim to provide a more or less successful
automatic detection of exploitation, several preventive mea-
sures have also been proposed. The NetCamo-system [10]
combines traffic normalization with a central management
entity. In order to choose an optimal bandwidth consumption
for each pair of nodes, it is assumed that the central entity
always knows the available capacity of all network links
over which traffic can be sent. Based on this knowledge,
NetCamo is able to prevent traffic analysis while avoiding
any congestion at the same time. In large shared and dynamic
networks however, the available bandwidth of network links
is typically unknown and also subject to continuous change,
rendering NetCamo unsuitable for our context. Furthermore,
it introduces a single-point-of-failure.

Another solution that explicitly incorporates congestion
control is the network pump [11]. The approach was designed
for multi-level secure networks, where data packets are only
allowed to flow from lower level processes to higher level
processes. To enable reliable communication, high level pro-
cesses send acknowledgements to the corresponding lower
level processes. Since a compromised high level process could
systematically time its responses to leak information, the
network pump acts as a mediator between both levels. It
ensures that at least a certain amount of time has passed
between two consecutive acknowledgements to the same lower
level process. Due to the increasing delay when the network
gets congested, the network pump automatically prevents
congestion collapse. Although the basic idea could be adapted
to non-multilevel networks, it is not considered to be suitable,
as it does not completely prevent information leakage.

More recent is Sadeghi et. al’s work [12], which proposes a
combination of traffic normalization and mode security, where
each mode corresponds to a specific bandwidth consumption,
e.g. 1Mbit/s, 5Mbit/s and 20Mbit/s. Whenever a VPN gateway
initiates a mode transition, the new mode is chosen according
to the amount of traffic coming from the associated protected
network. An implicit adaptation to congestion can therefore be
achieved, if the internal traffic demand automatically decreases
due to high latency or packet loss, as then a mode with
lower bandwidth consumption will be chosen during the next
transition. Consequently, the quality of congestion control
highly depends on the granularity of mode transitions, e.g.
increase/decrease in steps of 0.1Mbit/s vs. steps of 1Mbit/s,
and the transition interval, e.g. every 10 milliseconds vs. every
second. While a higher granularity and a lower transition
interval enable a better adaptation to congestion, they also
increase the exploitable covert channel bandwidth. Hence,

this approach inherently cannot achieve a good utilization of
available bandwidth and prevent leakage of information at the
same time.

B. Congestion Control without Guaranteed Delivery

We aim for a protocol that provides congestion control,
but does not guarantee delivery – in contrast to TCP. Many
unreliable congestion control protocols [13] have already been
developed in the context of multimedia streaming applications.
One primary focus of these congestion control protocols is to
achieve TCP-friendly behavior, which means that the proto-
col’s long-term throughput does not exceed the throughput
of a TCP flow under the same conditions [14]. However,
selecting TCP-friendliness to be a primary goal is rather
problematic in the VPN context. Consider a VPN scenario with
five simultaneous TCP transmissions being tunneled through
one VPN connection. In a traditional VPN without traffic
normalization, the encrypted traffic from the gateway would
then also automatically consume the bandwidth of five TCP
transmissions. If a TCP-friendly traffic normalization is taking
place instead, the encrypted traffic from the gateway would
consume the bandwidth of just one TCP flow, hence slow-
ing down the protected TCP flows. Adjusting the consumed
bandwidth proportionally to the number of currently running
TCP flows would leak information about the protected traffic.
Consequently, full TCP-friendliness, i.e. similar short term
behavior, cannot be realized under the given goals, rendering
existing protocols unsuitable.

IV. CONGESTION-AWARE TRAFFIC NORMALIZATION

To prevent leakage of information, rate adaptation must be
executed such that it is fully independent of the current rate
of tunneled traffic. Therefore, we propose to perform rate
adaptation solely based on the conditions in the public network
by assessing visible traffic patterns. Any data being exchanged
to control the rate is transmitted in protocol fields that are
clearly separated from any transported data.

The following section discusses how feedback is transmitted
in our protocol, first. We then continue by introducing a basic
communication model for two VPN nodes. In Sec. IV-C, we
give details on our congestion control scheme.

A. Transmission of Feedback

In difference to usual network scenarios, the targeted band-
width is always fully utilized in the considered VPNs. Thus,
there is a significant and constant share of bi-directional traffic
flowing between the devices. Already for efficiency reasons
it makes sense to piggyback any control information in the
exchanged data packets. Such an approach has an additional
advantage: the control information may easily be protected by
the cryptographic routines of the VPN, i.e., potential attackers
may not perform subtle denial-of-service attacks by tampering
with the control information. To achieve the same resilience,
explicit feedback packets would need to be padded to the size
of data packets, introducing significant overhead and could
potentially lead to congestion themselves.



Hence, we propose that VPN nodes embed congestion
feedback into any packet sent, including dummy packets.
This approach simplifies congestion control and cryptographic
routines because every packet may be handled in the same
way. It also guarantees that congestion control feedback can
be delivered as long as there is no complete interruption of
communication.

A potential negative aspect of this mandatory piggybacking
is the slight reduction of the maximum transmission unit
(MTU) for client devices, even if there is no congestion
at all. In comparison to the overhead introduced by VPN
protocols, however, this is negligible. Like already pointed out,
the alternative of explicit acknowledgments would lead to an
even higher overhead in total.

B. A Simple Model for Bandwidth Control

Fundamentally, the consumed network bandwidth is defined
by the length of the transmitted packets and the transmission
interval. Thus, in theory, congestion control can be exercised
by changing either packet lengths or transmission interval.
Like in other IP networks, modifying the packet lengths has
the major drawback that it requires additional measures to
cope with the situation, i.e., so that packets exceeding the
variable MTU may still be tunneled. This includes techniques
like fragmentation, Path MTU discovery, and TCP proxying,
all having a major impact on performance and implementation
complexity. Therefore, also for VPNs a sole adjustment of the
transmission interval is favorable.

Based on the outlined feedback loop between every pair
of VPN nodes, we model the VPN connection of a node A
to a node B at a fixed point in time by the following three
variables:
• SA→B

goal represents the intended sending rate at which
node A should send packets to node B given by an
administrative constraint, e.g. a fixed pre-configured value
(every 10 milliseconds, for example) or even a dynamic
value controlled by an algorithm implementing mode
security.

• The current sending rate SA→B
current defines the rate at

which node A is currently sending packets to node B.
It is controlled by the congestion control mechanism.

• The maximum sending rate SA→B
max reflects the rate that

the communication path from node A to node B is cur-
rently able to handle given the fixed length of normalized
packets. The exact value of SA→B

max is unknown to the
device and assumed to be dynamically changing due to
traffic conditions. In particular, this value can be lower
than SA→B

goal .

C. Rate-Based Congestion Control

One fundamental limitation of window-based approaches is
that they are sensitive to asymmetric bandwidths, as the
sending rate of payload packets depends on the arrival rate of
acknowledgements. We therefore prefer a rate-based approach.
Inspired by TCP emulation at receivers [15], we propose a
receiver-driven protocol where node B continuously sends a

suggested sending rate SA→B
suggested to node A as feedback. In

this protocol, node B continuously performs the following
steps:

1) Observe the flow of incoming packets for a certain
observation interval.

2) Update SA→B
suggested based on the measured loss ratio.

3) Wait until the flow of packets coming from A has been
adapted.

Whenever node A receives a packet from node B, it simply
changes its current sending rate to max(SA→B

goal , SA→B
suggested).

Instead of the rather primitive approach of decreasing the
suggested sending rate immediately after a packet loss oc-
curred, we chose a slightly delayed reaction in order to adapt
the suggested rate proportional to the current packet loss. This
enables our algorithm to adjust the sending rate according to
how strong the path is actually congested. Therefore, it avoids
an unnecessarily strong lowering of the sending rate, which
in turn would have a negative impact on the TCP congestion
control of the transported data.

The length of the observation interval acts as a trade-off
between responsiveness to packet loss and accuracy of packet
loss estimation and therefore needs to be chosen carefully.
Consequently, using a fixed period of time to measure packet
loss is not useful, as the chosen duration might be too long for
one connection and too short for another at the same time. In
particular, transmissions over complex network infrastructures,
such as the Internet, are likely to experience different latencies
depending on the endpoints of communication and the charac-
teristics of the network paths. We chose an automated solution
to this problem: node B periodically derives its observation
interval from an exponentially weighted moving average of
the round-trip time (RTT). In our protocol, node B therefore
additionally embeds a round number RA→B

current into every
packet to node A. Node A in turn simply reports the highest
recently received round number RA→B

recent back to node B. To
obtain RTT samples, node B always increases RA→B

current by one
at the end of the second step and waits until the first packet
with the updated round number from A arrives. The arrival
of the first packet from A with the updated round number
then also marks the end of step 3. However, since A embeds
the reported round number in its regular packets, it might
not immediately send a packet after it has received the new
round number from B (as it depends on its own sending rate).
Our measurement procedure therefore slightly overestimates
the actual RTT.

The detailed behavior of node B upon arrival of a packet
from node A is given in Algorithm 1. The variables listed at
the beginning of the pseudo-code represent B’s internal state
specific to the connection A → B together with its initial
values. To improve readability however, the additional notation
of A → B at each variable was omitted. Furthermore, the
minimum observation interval Omin, the minimum sending
rate Smin, the fixed amount Sstep by which the suggested
sending rate is increased and the RTT weight factor w are
pre-configured values.



One minor addendum required for Algorithm 1 is that node
A also reports its current sending rate SA→B

current to node B.
While this data is not a necessity, its availability allows for
a much simpler computation of the suggested transmission
interval. In our scheme, every packet sent by a node A to
its neighbor B carries four values: A’s current sending rate
SA→B
current, A’s highest round number RA→B

rcnt recently received
from B, the suggested sending rate SB→A

suggested for node B and
the current round number RB→A

current for node B. We assume
that the underlying VPN mechanism already provides a each
sequence number SNpkt for every packet.

The three steps described at the beginning of this section
are reflected in Algorithm 1 by the following conditions:

1) While Updating = false∧SNpkt < SNthresh, node B
monitors the incoming packets.

2) When Updating = false ∧ SNpkt ≥ SNthresh, node
B computes the observed packet loss and updates
Isuggested as well as Rcurrent accordingly. To be robust
against packet reordering during the observation period,
Algorithm 1 only considers the highest recently received
sequence number SNpkt and the number SNstart that
marked the beginning of the current observation interval,
together with the total number of received packets at
each point (line 12). Since a lower sending rate results
in a lower bandwidth consumption, the recently reported
value for Scurrent is decreased proportionally to the
fraction of lost packets with a cut-off at the predefined
minimum sending rate (line 20).

3) While Updating = true, node B waits until the first
packet with the updated round number from node A
arrives. As soon as the round number Rrecent sent by
node A equals the current round Rcurrent, node B
updates the length of the observation interval O (line 3),
computes a new value for SNthresh (line 8) and restarts
with the first phase.

In contrast to simply relying on a timer to end the observation
period, we chose a sequence number threshold SNthresh

because of its sensitivity to the current length of the queue
at the path bottleneck. If the bottleneck is overloaded and the
queue is building up, packets with a sequence number that
triggers a sending rate update are delayed, thus reducing the
risk of a premature rate increase.

The exact configuration, e.g. maximum queue length and
queue management strategy, of the routers on a communication
path over the Internet is typically unknown. As a consequence,
the delay between the beginning of a network overload and the
time when the first packet loss is recognized by the receiver
can only be determined heuristically. It is therefore possible
that a VPN node running Algorithm 1 underestimates this
delay and increases Ssuggested too early, which leads to the
subsequent observation of packet loss before a packet with the
updated round number was received. Algorithm 1 therefore
uses two additional variables named allowdec and allowinc

to allow the receiver to retrospectively correct its feedback
SA→B
suggested, although with lower accuracy.

Algorithm 1: ProcessPacket(SNpkt, Rrcnt, Scurrent)

State:
O = Omin

Ssuggested = Sinit

SNthresh = Sinit × Omin/1000
SNstart = 0
nstart = 0
nrecv = 0
tlast = time of connection establishment
Rcurrent = 0
Updating = false
allowdec = true
allowinc = true

1 nrecv ← nrecv + 1
2 tnow ← current system time in milliseconds
3 if Updating and Rrcnt = Rcurrent then
4 Updating ← false
5 allowdec ← true
6 allowinc ← true
7 O = max(Omin, O × w + (1− w)(tnow − tlast))
8 SNthresh ← SNpkt +O × Scurrent

9 nstart ← nrecv

10 SNstart ← SNpkt

11 if SNpkt ≥ SNthresh then
12 ploss ← 1− nrecv−nstart/SNpkt−SNstart

13 if ploss = 0 and allowdec then
14 Ssuggested ← Scurrent + Sstep

15 allowdec ← false
16 tlast ← tnow
17 Rcurrent ← Rcurrent + 1
18 Updating ← true

19 else if ploss > 0 and allowinc then
20 Ssuggested ← max(Smin, Scurrent×(1−ploss))
21 allowdec ← false
22 allowinc ← false
23 tlast ← tnow
24 Rcurrent ← Rcurrent + 1
25 Updating ← true

V. EVALUATION

In this section, we investigate how well our proposed protocol
meets the requirements stated in Sec. II. We start with a
discussion regarding possible leakage of information by the
protocol. In Sec. V-B, we present a measurement study based
on a network testbed and discuss its results.

A. Information Leakage
Based on the assumption that VPN systems provide a leakage-
free enforcement of a given sending rate, there are two char-
acteristics managed by congestion control for a node A that
could leak information to an outside attacker: the difference
between the current sending rate SA→B

current before and after a
transmission rate update S′A→B

current and the duration between
two consecutive transmission rate changes.



Figure 4. Topology of the testbed used for measurements.

As natural for congestion control, S′A→B
current−SA→B

current might
either be positive or negative, depending on the rate suggested
by the other endpoint B. In Algorithm 1, each change to the
sending rate suggested by B is determined solely based on the
packet loss computed from the number of packets received
from A and their sequence numbers, as indicated by lines
12-25. The number of received packets is controlled only by
the sending rate of node A and the packet loss on the network
path, which both cannot be manipulated by a device within the
protected network area of node A or B. We assume that the
received sequence numbers are assigned by the VPN gateways
in a manner that is independent of the characteristics of the
encapsulated packets. If B chooses to increase SA→B

suggested, A
will either set its sending rate to SA→B

suggested or to SA→B
goal , as

explained in Sec. IV-C. Since SA→B
suggested is computed only

from publicly visible information and SA→B
goal is fixed, there is

no leakage of information about the internal traffic. Whenever
B decreases SA→B

suggested, A simply accepts the suggested in-
terval. Thus, an increase in A’s sending rate also cannot leak
information about the actual internal traffic.

According to lines 7 and 8, Algorithm 1 chooses SNthresh

so that each observation period approximately lasts one RTT.
The duration between consecutive transmission rate changes
can therefore only become shorter if the network’s RTT de-
creases. If the duration between consecutive transmission rate
changes gets longer, this could be due to increased network
latency, packet loss or both.

Neither of these internal values can be controlled by nodes
within the protected network area, thus no information can be
leaked to outside attackers. Note that the congestion control
algorithm does not take bandwidth consumption of flows by
protected nodes into consideration, so that the intensity of data
packets being sent by the nodes does not have any effect.
When packets are fully encrypted and properly padded, covert
channels from the protected network area are ruled out.

B. Utilization of Available Bandwidth

Probably the most fundamental difference of the scenario
from previous works is that the congestion control protocol
shall not only reach a bandwidth consumption close to the
bottleneck bandwidth, but also enable protected TCP flows
to attain high goodput. Hence, the measurements presented
in the following focus on the interaction between competing
VPN flows and the resulting goodput of tunneled TCP trans-
missions.
To assess our protocol, we conducted experiments in a testbed
network consisting of seven nodes as illustrated by Fig. 4.
Hosts as well as routers were running a Debian Linux (Kernel
3.16.0-4-amd64) and cubic as the TCP congestion
control algorithm (default value). Gateway A, B and C run a

micro-kernel-based operating system with a static scheduling
plan, so that packets may be sent every 2 ms. The current
transmission interval is mapped to a number of packets be-
ing sent in each transmission slot. The packets sent by the
VPN gateway are UDP-encapsulated ESP packets, padded
to a length of 1460 bytes (without the Ethernet header). To
create a bottleneck, we reduced the transmission speed of the
network interface between Router A and B to 10Mbit/s, but
all interfaces were kept in full duplex operation.

To find out how much packet rate enforcement alone already
interferes with TCP congestion control, we started with a setup
where only gateway A and B are connected, consuming a
gross bandwidth of 8.16 Mbit/s in each direction and hence
just avoiding any congestion. Goodput was measured by trans-
ferring 50 MB of data from Host A to Host B using iperf
(version 2.0.5). Averaging over 32 runs, the achieved goodput
amounts to 7.35 Mbit/s with a standard deviation of 0.01
Mbit/s. Due to the overhead created by UDP encapsulation,
ESP and congestion control data, each protected packet is only
1370 bytes long, so that effectively 1318 bytes of payload can
be transferred per packet. The maximum goodput that can be
achieved with the fixed sending rate is therefore 7.36 Mbit/s.
Consequently, the rate enforcement alone had a negligible
impact on TCP goodput according to the measurements.

For the evaluation of the interaction between our protocol
and the protected TCP traffic during congestion, we consider
the two cases that congestion occurs only in one direction
of the communication path, and that both directions are
congested. In the unidirectional congestion scenario, we set
SA→B
goal and SA→C

goal to 8.16 Mbit/s (gross) and SB→A
goal as well

as SC→A
goal to 4.08 Mbit/s so that both flows originating at

node A compete for bandwidth. For the bidirectional scenario,
we again set SB→A

goal and SC→A
goal to 8.16 Mbit/s. During all

measurements, the values Smin and Sstep were set to 204
kbit/s. Furthermore, Omin and w were set to 40ms and
1/8, respectively. For the value of ploss, we used a fixed-
point number ranging from 0 to 10.000. We used the default
drop-tail as queue management algorithm for the interface
connecting Router B to Router A and vice versa. The limit
for the length of each queue was set to 20 packets.

Table I
PERCENTAGE OF RETRANSMISSIONS AND AVERAGE RTT UNDER

CONGESTION DEPENDING ON CONGESTION CONTROL.

Cong. control Cong. type % Retransm. RTT

disabled unidirectional 24.4± 1.2% 44.5± 0.43 ms

enabled
unidirectional 1.9± 0.05% 42.49± 0.26 ms

bidirectional 1.87± 0.14% 70.75± 0.89 ms

Again, we measure the achieved goodput by transferring a
fixed amount of bytes from Host A to Host B using iperf.
Fig. 5 summarizes the achieved goodput of each algorithm
for the different congestion scenarios. The height of each bar
denotes the average goodput and the lines around the top of
each bar represent the observed minimum and maximum. For



0
1
2
3
4
5
6
7

A → B A → B A ↔ B A ↔ B

G
oo

dp
ut

[M
bi

t/s
]

Network congestion

no CC, 1 conn
CC, 1 conn

CC, 10 conn
theoretic bound

Figure 5. Measured TCP goodput for different congestion setups and
congestion control schemes, showing: the situation without our system (red),
performance of a signle flow under uni- and bidirection congestion (orange)
and the accumulated goodput of 10 flows (turquoise). Note the theoretic upper
bound of 4.6 Mbit/s.

comparison, there is a horizontal line at 4.60 Mbit/s, as this
would be the goodput achieved in case of ideal congestion
control. In case of unidirectional congestion and no congestion
control, TCP only achieved an average goodput of 175±0.013
kbit/s due to high packet loss. Results for bidirectional conges-
tion were omitted, as even the time required for a transmission
of 10 MB exceeded the time available for the measurement
study. After integration of the Algorithm 1, the average TCP
goodput increased to 1.7 ± 0.04 Mbit/s under unidirectional
congestion. Under bidirectional congestion, the average TCP
goodput increased to 1.1± 0.06 Mbit/s. To clarify the reasons
for these results, Table I shows the average percentage of
retransmissions and the average round-trip time experienced
during the TCP transmissions. A rather prominent result is
that the congestion control only slightly influences the RTT,
but may heavily reduce the number of retransmits.

The results presented so far showed what a single TCP
connection can achieve under our congestion control scheme.
However, it seems likely that most of the time, there are
multiple competing TCP transmissions running over the VPN
connection. Therefore, we also measured the goodput of 10
concurrently running TCP transmissions from Host A to Host
B under bidirectional congestion.

Summarizing these measurements, the flow of packets from
gateway A to gateway B allowed a minimal, mean and
maximal goodput of 4.30 Mbit/s, 4.49 Mbit/s and 4.68 Mbit/s,
respectively. The allowed goodput Gmax is derived from the
consumed bandwidth of the traffic Tconsumed flowing from
gateway A to gateway B and the overhead incurred by ESP and
TCP according to the formula Gmax = Tconsumed×1318/1474.
From the allowed goodput, the TCP concurrent transmissions
were able to cumulatively utilize at least 3.59 Mbit/s, 3.99
Mbit/s on average and at most 4.16 Mbit/s. Consequently,
it can be said that even when the packet loss resulting
from congestion control by the VPN gateways lowers the
goodput of protected TCP flows, a high percentage of the
consumed bandwidth can still be utilized if there are multiple
simultaneous transmissions.

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a congestion control scheme that
extends strict traffic normalization by achieving automatic

adaptation to the current network transport capacity without
leaking information about the protected traffic. The control
scheme first obtains an estimate of the current packet loss
rate and then adjusts the sending rate proportionally, hence
avoiding strong rate throttling in response to packet loss.
To adapt the packet loss estimation to the network’s latency
characteristics, the scheme waits until a dynamically chosen
number of packets have been received. Leakage of information
is completely avoided, since the control algorithms work solely
based on publicly visible information. We furthermore con-
ducted a measurement study which confirmed that when con-
gestion occurs, applying our proposed control scheme indeed
yields a significantly increased goodput of TCP connections
compared to traffic normalization without congestion control.
Thus, the scheme may help for traffic normalization to become
more acceptable.

The measurement study also revealed that our algorithm
currently tends to recognize congestion slightly too late. One
part of our future work will therefore be to improve how the
number of packets needed for loss estimation is chosen. We
furthermore plan to integrate Explicit Congestion Notification
into the control scheme to reduce the experienced packet loss
and therefore improve the goodput of protected TCP flows.

ACKNOWLEDGEMENTS

This work was in parts supported by BMBF project AN.ON-
next under Grant No. 16KIS0421.

REFERENCES

[1] G. Greenwald, “The U.S. Government’s Secret Plans to Spy for Ameri-
can Corporations,” https://theintercept.com/2014/09/05/us-governments-
plans-use-economic-espionage-benefit-american-corporations/, 2014.

[2] M. Backes, G. Doychev, M. Dürmuth, and B. Köpf, “Speaker Recogni-
tion in Encrypted Voice Streams,” in ESORICS, 2010.

[3] G. Shah, A. Molina, M. Blaze et al., “Keyboards and Covert Channels,”
in Usenix Security, 2006.

[4] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, “Pattern-Based
Survey and Categorization of Network Covert Channel Techniques,”
ACM Computing Surveys, vol. vol. 47, issue 3, 2015.

[5] F. Rezaei, M. Hempel, P. Shrestha, S. Rakshit, and H. Sharif, “Detecting
Covert Timing Channels using Non-Parametric Statistical Approaches,”
in IEEE IWCMC, 2015.

[6] S. Cabuk, C. E. Brodley, and C. Shields, “IP Covert Timing Channels:
Design and Detection,” in Proceedings of the 11th ACM conference on
Computer and Communications Security, 2004.

[7] H. Zhao and Y.-Q. Shi, “Detecting Covert Channels in Computer
Networks based on Chaos Theory,” IEEE TIFS, vol. vol. 8, no. 2, 2013.

[8] S. Gianvecchio and H. Wang, “Detecting Covert Timing Channels: An
Entropy-Based Approach,” in ACM CCS, 2007.

[9] R. Browne, “Mode security: An Infrastructure for Covert Channel
Suppression,” in Proceedings of the IEEE Computer Society Symposium
on Research in Security and Privacy, 1994.

[10] Y. Guan, X. Fu, D. Xuan, P. U. Shenoy, R. Bettati, and W. Zhao,
“NetCamo: Camouflaging Network Traffic for QoS-Guaranteed Mission
Critical Applications,” IEEE TSMC, vol. 31, 2001.

[11] M. H. Kang, I. S. Moskowitz, and D. C. Lee, “A network pump,” IEEE
Transactions on Software Engineering, vol. vol. 22, issue 5, 1996.

[12] A. Sadeghi, S. Schulz, and V. Varadharajan, “The Silence of the LANs:
Efficient Leakage Resilience for IPsec VPNs,” in ESORICS, 2012.

[13] J. Widmer, R. Denda, and M. Mauve, “A Survey on TCP-Friendly
Congestion Control,” IEEE Network, vol. vol. 15, issue 3, 2001.

[14] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking, vol.
vol. 7, issue 4, 1999.

[15] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Receivers–
Flow Control for Multimedia Streaming,” Tech. Rep., 2000.


