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ABSTRACT
Current leader election algorithms fail in the presence of Sybil

attacks, i.e., one malicious entity inserting many nodes, network

dynamics, and restricted knowledge about the graph. However,

social overlay networks, i.e., peer-to-peer networks with links cor-

responding to social relationships, face all of the above challenges.

Social overlay networks naturally offer privacy, as they avoid con-

nections with strangers, and furthermore prevent a Sybil attacker

from controlling a large number of links in the graph. As recent

ideas for scalable communication in such overlays rely heavily on

attack resistant leader election, solving leader election for such

overlays opens the door for decentralized, privacy-preserving, and

secure communication at a large scale.

In this work, we propose a novel leader election algorithm based

on three-majority voting that utilizes timestamps and cryptographic

signatures to detect leader faults in an attack resistant manner. We

evaluate our algorithm with simulations on real-world as well as

synthetic network topologies. Our results indicate that in networks

whose degree sequence follows a power law, our leader election

algorithm quickly achieves consensus for more than 80% of all

nodes. Furthermore, attackers are unlikely to become leaders as

long as the number of connections they establish with honest nodes

is low.
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• Networks→ Network simulations; Peer-to-peer networks;
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Figure 1: Because the set of participants is unknown to the
correctly operating nodes, a malicious node can pretend to
be connected to an arbitrary number of fake nodes.

1 INTRODUCTION
The problem of leader election is one of the most researched topics

in the area of distributed computing. Because of the high com-

munication overhead required by traditional solutions, alternative

notions have emerged to cover large-scale networks such as peer-

to-peer overlays [1, 23]. However, these solutions still require that

more than 2/3 of all nodes operate correctly, restricting their use to
networks that can prevent participants from creating an arbitrary

number of fake nodes.

One type of peer-to-peer network without centralized admis-

sion control that is likely to benefit from leader election are social

overlay networks. These networks represent a promising idea for

the realization of scalable, attack resistant and privacy-preserving

distributed services over the Internet [9, 27, 35]. In contrast to other

peer-to-peer networks, social overlay networks restrict connectiv-

ity to nodes whose users share a mutual trust relationship in the

real world. This approach improves privacy by limiting the expo-

sure of identifying information, such as the node’s IP address, to

trusted participants.

Due to the lack of centralized admission control, social overlay

networks are highly vulnerable to the insertion of an arbitrary num-

ber of fake nodes, also known as Sybil attack [15] (as illustrated

by Figure 1). Not only do Sybil attacks render the 2/3-majority as-

sumption unrealistic, they also make seemingly weak assumptions

such as the existence of a reliable estimate of the network size prob-

lematic. However, an adversary that aims to insert nodes under

his control into a social overlay network first needs to perform

social engineering to trick participants into accepting a connection

from its nodes. Thus, social overlay networks might contain an

arbitrary number of malicious participants but the number of links

between malicious and honest participants is likely to be small in

comparison to the total number of links.

Leader election comes into play when considering communi-

cation in the network. Recent approaches suggest that spanning

tree-based routing algorithms will drastically increase the perfor-

mance of social overlays [30]. Electing an honest root node is key

for the success of these routing algorithms. However, despite its im-

portance, the problem of leader election in social overlays remains

unsolved.

https://doi.org/10.1145/3369740.3369770
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Solving leader election in social overlays requires overcoming

three challenges. In addition to the key challenge of Sybil attacks,

scalability and the ability to deal with network dynamics are of

utmost importance. Networks may consist of thousands of nodes

and participants join and leave frequently.

In this work, we investigate whether distributed voting algo-

rithms [4, 10, 21] can serve as a foundation for scalable and attack

resistant leader election in social overlay networks. These algo-

rithms rely only on local interaction between directly connected

nodes and do not have any built-in assumptions about global net-

work properties (e.g., the number of nodes or the mixing time [25]),

making them a promising substrate for leader election.

Concretely, we design a leader election protocol based on three-

majority voting [4]. In contrast to the original protocol, our algo-

rithm can deal with network dynamics, including the failure of

a leader. We furthermore leverage digital signatures to prevent

malicious parties from impersonating leaders.

Our extensive simulation study reveals that our algorithm con-

verges fast on various synthetic and real-world social networks.

However, it heavily relies on the power-law distribution of a so-

cial network and shows a drastically reduced convergence speed

for graphs with a uniform degree distribution. In terms of attack

resistance, we evaluate the likelihood of an attacker to be elected

leader. As long as the attacker establishes at most twice as many

connections as an average honest node, its chance to become the

leader amounts to 1.9% in our real-world data set.

2 RELATEDWORK
In the following, we survey the state of the art of Byzantine leader

election and explain which assumptions render existing works

unsuitable for social overlay networks. Afterwards, we present the

necessary background on distributed voting protocols, which we

build upon in the following sections.

2.1 Byzantine leader election
Traditional Byzantine leader election algorithms [17, 19, 22, 32]

guarantee consensual choice of a single leader amongst all nodes,
even if a fraction of nodes behaves incorrectly. Furthermore, tra-

ditional algorithms guarantee that with constant probability, the

chosen leader is a correctly-behaving node. Nodes deviating from

the correct behavior are called Byzantine nodes.
However, algorithms for traditional Byzantine leader election

assume a static clique network where the total number of partici-

pating nodes is known to all nodes and all communication is done

by broadcast, thus limiting their use to networks with a few hun-

dred nodes. To enable Byzantine leader election in large networks

such as peer-to-peer networks, King et al. [23] relaxed the require-

ment that all non-Byzantine nodes agree on the same leader and

proposed a solution without broadcast communication. While the

solution of King et al. only works on static networks, Augustine

et al. [1] consider Byzantine leader election in large, dynamic net-

works. Similar to King et al., Augustine et al. allow a fraction of

non-Byzantine nodes to select a different leader. Unfortunately,

both works critically rely on the assumption that less than one

third of all nodes behaves incorrectly. As outlined in Section 1, this

is unrealistic for social overlay networks.

Several algorithms related to Byzantine leader election have also

been proposed for wireless sensor networks (WSNs) [14, 33, 37].

These solutions employ cryptographic techniques to keep Byzan-

tine nodes from increasing their chance of being elected. However,

all works in the area of WSNs assume that every node holds a list

with the identifiers of all other nodes. Because we allow attackers

to create an arbitrary number of fake identifiers, they can easily

compromise such schemes.

In summary, all of the existing solutions for Byzantine leader

election assume that only a minority of nodes in the network is

Byzantine. Thus they cannot meet their security guarantees in

networks where an attacker can introduce an arbitrary number of

malicious nodes.

2.2 Distributed voting algorithms
Distributed voting algorithms resemble the spread of opinions and

the forming of consensus in social systems. Such algorithms are

interesting in the context of social overlays as they operate without

any knowledge about global network properties, such as the size

of the network or the current state of all nodes.

Common to all distributed voting algorithms is that every node

has a 𝑣𝑜𝑡𝑒-variable that holds an element from a setV of possible

votes and that each node adjusts its 𝑣𝑜𝑡𝑒-value at regular intervals.

In the context of leader election, the set V contains the unique

identifier of each node in the network. Furthermore, the network

may start in a state where each node’s 𝑣𝑜𝑡𝑒-value holds its own

identifier.

In the most basic variant, also called the voter model, each node

periodically requests the current 𝑣𝑜𝑡𝑒-value of a randomly chosen

neighbor and writes the response into its own 𝑣𝑜𝑡𝑒-register [5].

While arguably very simple, this algorithm suffers from slow con-

vergence, as the time needed for global consensus grows linearly

with the network size [5].

To reduce convergence time, recent algorithms favor popular

votes, i.e., those present in the 𝑣𝑜𝑡𝑒-variable of many nodes, more

strongly. Cooper et. al. [10] proposed two-sample voting, where
every node periodically requests the 𝑣𝑜𝑡𝑒-value of two randomly

chosen neighbors. If both neighbors respond with the same value,

then this value is adopted. Otherwise, the requesting node keeps its

current 𝑣𝑜𝑡𝑒-value. We consider two-sample voting to be unsuited

for leader election, where every node may start with a different

𝑣𝑜𝑡𝑒-value. In this case, nodes with a high number of neighbors

are unlikely to change their 𝑣𝑜𝑡𝑒-value until a sufficient number of

neighbors have already adopted a common 𝑣𝑜𝑡𝑒 value, thus slowing

down the election.

Currently, the most promising opinion dynamics for leader elec-

tion is three-majority voting [4], where every node 𝑢 periodically

requests the 𝑣𝑜𝑡𝑒-value of three randomly chosen neighbors. If at

least two of the received responses contain the same 𝑣𝑜𝑡𝑒-value 𝑣 ,

then the node adopts 𝑣 as its new 𝑣𝑜𝑡𝑒-value. Otherwise, i.e., all

three responses contain different values, it adopts a random vote

out of the three responses. Thus, if all nodes start with a differ-

ent 𝑣𝑜𝑡𝑒-value, three-majority voting initially behaves similar to

the voter model but as soon as a 𝑣𝑜𝑡𝑒-value is adopted by a suffi-

cient number of nodes, three-majority voting will converge more

quickly [6].
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So far, existing work on the convergence speed and attack re-

sistance of three-majority voting focuses exclusively on complete

network topologies [3, 4, 6, 18]. Thus, it remains an open ques-

tion how well three-majority voting performs in non-complete

networks.

3 MODEL AND NOTATION
In the following, we present a simple formal model for social overlay

networks and describe our threat model.

3.1 System model
We model a social overlay network at a fixed point in time as

a connected, undirected graph 𝑆 = (𝑉 , 𝐸), |𝑉 | = 𝑛, where each

edge corresponds to a bidirectional connection between a pair of

participants. In the following, 𝑁 (𝑢) = {𝑣 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸} denotes
the neighbors of 𝑢.

Since social overlay networks are dynamic, nodes may join or

leave the system and connections between nodes are established or

torn down over time. Leaving includes the case that a node notifies

its neighbors prior to its departure as well as that the node crashes

abruptly. We do not make any assumptions about the number of

nodes being affected by an arrival or departure of a node. It is

therefore possible that a large number of nodes joins the overlay at

once (e.g., because a connection between two separated overlays has

been established) or leaves the overlay (e.g., because the network

got partitioned).

We do not assume that any node knows the overall number of

participants or other global properties at any point in time. The

only assumption we make regarding knowledge about the network

structure is that there exists a globally known upper bound 𝐷 on

the diameter of the network. At every point in time, the actual

diameter of the overlay never exceeds 𝐷 but can be much lower

than 𝐷 . We consider this assumption to be realistic, as existing

work on online social networks indicates that even networks with

millions of nodes have a diameter below 30 [26].

To perform leader election, each node may send messages to

its neighbors and process received messages. We assume that the

overlay network operates synchronously, meaning that

• The clocks of any pair of nodes differ at most by a constant

Δ𝐶 .
• The time needed to process received messages and to send

new messages is bounded by a constant Δ𝐸 .
• The delay between the sending of a message and its arrival

at the corresponding neighbor is bounded by a constant Δ𝐷 .

The constants Δ𝐶 , Δ𝐸 and Δ𝐷 are known to all nodes.

Based on the aforementioned assumptions, we design our al-

gorithm such that all nodes operate in synchronous rounds, where
each round lasts for Δ𝑅 = Δ𝐸 + Δ𝐷 time units. Within each round,

every node processes incoming messages and sends new messages

exactly once.

3.2 Adversary model
In this work, we consider an adversary that controls a set 𝐵 of

colluding malicious (or adversarial) nodes and is able to set up a

bounded number of connections between nodes under his control

and non-malicious nodes (called honest nodes) 𝐻 .

We consider this adversary to be relevant because the setup of

connections in social overlays requires large-scale social engineer-

ing, which we deem to be difficult in practice. Thus, the adversary

will only be successful for a subset of the overlay’s participants.

The adversary aims to maximize the chance that a malicious

node is elected as leader, which may serve as starting point for

attacks on the algorithms building upon the leader election. To bias

the election towards themselves, adversarial nodes may actively

interfere with the leader election process by deviating arbitrarily

from the leader election algorithm. However, we assume that the

adversary does not know all honest nodes and their connections

between each other a priori. As a consequence, he cannot choose

which honest nodes will connect to malicious nodes. We consider

this assumption to be realistic, because social overlay networks are

large-scale and dynamic distributed systems with participants from

multiple countries.

Furthermore, we assume that the adversary is limited to polyno-

mial-time attacks and hence unable to break secure cryptographic

primitives. This is in accordance with the Dolev-Yao model [13],

which has been accepted as realistic for all practical purposes.

4 VOTING-BASED ELECTION
As explained in Section 2.1, existing leader election algorithms

fail if an attacker can create a large number of fake nodes. In the

following, we thus propose a novel leader election algorithm based

on three-majority voting [4]. Three-majority voting operates solely

on information of each node’s neighborhood, which renders it

suitable for large-scale networks. Furthermore, it is not affected by

the number of malicious nodes but only by the number of edges

between honest and malicious nodes.

4.1 Adaptation of three-majority voting
To enable leader election based on three-majority voting, each node

needs to have a unique identifier. Assigning unique identifiers in a

privacy-preserving manner is thus the first step of our protocol. As

a consequence, IP addresses are unsuitable, as they reveal sensitive

information about the leader.

Instead, we let every node generate a public/secret key pair

𝐼𝐷𝑢 , 𝑆𝐾𝑢 of an asymmetric cryptosystem once upon startup. Each

pair of keys is generated locally by each node, without reliance

on a third party, such as a public key infrastructure. We use the

term ID of node 𝑢 synonymously for the public key 𝐼𝐷𝑢 of 𝑢. For

a given public key 𝐼𝐷 , we say that 𝑢 owns 𝐼𝐷 if 𝑆𝐾𝑢 is the correct

secret key for 𝐼𝐷 . Given that the length of each public key is𝑚 bits,

ID = {0, 1, .., 2𝑚 − 1} denotes the set of possible identifiers.
To indicate which identifier is considered to be the leader’s iden-

tifier, every node 𝑢 has a 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 variable that holds a value from

ID. Upon startup of a node 𝑢, 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 holds 𝐼𝐷𝑢 . As stated above,

nodes then change their leader value to the most common value

within a set of three values picked uniformly at random from its

neighbors. Since nodes in social overlay networks may have less

than three neighbors, the neighbors are selected randomly with

replacement. If at least two of the chosen neighbors have the same

𝑙𝑒𝑎𝑑𝑒𝑟 value 𝐼𝐷 ′
, 𝑢 sets its own 𝑙𝑒𝑎𝑑𝑒𝑟 value to 𝐼𝐷 ′

. If all three

neighbors hold a different 𝑙𝑒𝑎𝑑𝑒𝑟 value, 𝑢 randomly selects one of

these values and adopts it as its 𝑙𝑒𝑎𝑑𝑒𝑟 value.
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Figure 2: Example for invalid 𝑙𝑒𝑎𝑑𝑒𝑟 values due to a node
fault. The tuples next to each node denote its respective 𝐼𝐷
and 𝑙𝑒𝑎𝑑𝑒𝑟 value. Because node 22 crashed, node 43, 2 and 77

now form a separate overlay in which there is no node with
identifier 53.

In contrast to the original algorithm [4], our version does not

include a node’s own current leader value when choosing a new

value. This modification is motivated by the fact that two-sample

voting has been shown to converge fast when not including a node’s

own current leader [11].

4.2 Handling leader faults
Three-sample voting cannot be used as-is in dynamic networks,

because it does not adapt to node faults. Figure 2 shows an example

for an overlay in which a node with identifier 53 has been elected

as leader. Due to a node fault, the overlay is separated into two

partitions. Without further measures, all nodes belonging to the

partition without node 53 will keep considering node 53 as leader.

In the following, we say that an identifier is invalid if none of

the nodes currently participating in the social overlay owns this ID.

To eventually recognize and remove invalid identifiers, each

node 𝑢 attaches a timestamp 𝑡𝑠𝑢 to its own identifier. During the

election procedure, this timestamp will then be propagated together

with 𝑢’s ID. At time 𝑡 , an identifier is considered to be invalid if

𝑡 − 𝑡𝑠𝑢 > Δ𝐶 + 𝐷Δ𝑅 , where Δ𝐶 , Δ𝑅 and 𝐷 are the globally known

bounds from Section 3.1.

We favor a timeout-based approach over an active propagation

of notifications about node failures because of its lower complexity.

An active propagation scheme must be made robust against fake

notifications as otherwise, malicious nodes can deliberately cause

honest nodes to drop popular identifiers.

To keep malicious nodes from altering the timestamp associ-

ated with an identifier, each node 𝑢 that considers itself to be the

leader also attaches a digital signature 𝑠𝑖𝑔𝑢 of 𝑡𝑠𝑢 , computed using

𝑢’s secret key, to its identifier. Upon reception of a message, each

node then checks if the provided signature is correct and drops the

message in case the check fails.

Given that social overlays are large-scale dynamic networks,

maintaining a global list of currently active identifiers shared by

all nodes would incur a high overhead. By creating a large number

of fake identifiers, malicious nodes could furthermore exploit such

a mechanism to exhaust the memory and bandwidth of honest

nodes. Instead, we embed the detection of invalid identifiers into

the voting process such that if a node 𝑢 considers itself to be the

leader, it periodically generates and propagates fresh timestamps

for its own identifier. Otherwise, it propagates the most recent

timestamp received for the identifier currently in its 𝑙𝑒𝑎𝑑𝑒𝑟 -variable.

As illustrated by Figure 3, our approach might cause honest nodes

to wrongly consider a valid identifier to be invalid if i) the owning

Figure 3: Example for erroneous expiration of timestamps.
The tuples next to each node denote its 𝐼𝐷 , 𝑙𝑒𝑎𝑑𝑒𝑟 and 𝑡𝑠

value. Since node 22 considers node 17 to be the leader, it
does not propagate timestamp value 10 from node 77 to
node 78. Furthermore, node 17 also considers node 77 to be
the leader and thus node 53 does not receive more recent
timetamps.

node does not consider itself to be the leader or if ii) there is no

path to the leader with 𝐼𝐷 on which all nodes have 𝑙𝑒𝑎𝑑𝑒𝑟 = 𝐼𝐷 .

However, our evaluation in Section 5 shows that in networks whose

degree distribution follows a power law, most nodes still quickly

reach agreement on a single valid identifier.

The three-majority voting proposed by Becchetti et al. [4] im-

plements a pull-based approach where nodes actively request the

current 𝑙𝑒𝑎𝑑𝑒𝑟 -value of the randomly chosen neighbors. While this

approach has a low communication overhead, it is unsuited for the

propagation of new timestamps in a timely manner, as a node might

choose to contact the neighbor with the most recent timestamp

just after several rounds have passed. Furthermore, if a neighbor

of the requesting node crashed or deliberately drops messages, the

latter will not receive a sufficient number of responses and thus be

unable to update its state accordingly.

To avoid the aforementioned problems, we instead rely on a push-

based approach where every node broadcasts its current 𝑙𝑒𝑎𝑑𝑒𝑟 -

value, including the most recent timestamp and the corresponding

signature, to all its neighbors in every round. Each node then keeps

the most recently received values for each neighbor, such that the

local voting procedure can be performed locally, without having to

send additional requests.

Due to the local broadcast, nodes propagate new timestamps

early, such that nodes with a high distance to the leader also receive

new timestamps in a timely manner. Furthermore, the broadcast

messages also implicitly serve as a heartbeat mechanism that can

be used to detect if a neighbor has crashed.

Because existing works [24, 26] indicate that social networks are

sparse such that nodes have a low degree and each node only needs

to send a (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔)-tuple to each neighbor, we consider the

overhead for this approach to be acceptable.

4.3 Leader election algorithm
Algorithm 1 displays the pseudocode of our leader election algo-

rithm. Upon start, every node writes its own 𝐼𝐷 into its 𝑙𝑒𝑎𝑑𝑒𝑟

variable, computes the corresponding timestamp together with a

signature and sends its state to all its neighbors (Line 3-7). The

function 𝑠𝑖𝑔𝑛 uses the secret key given as first argument to produce

a digital signature for the timestamp given as second argument. Af-

terwards, using the globally known constants given in Section 3.1,

each node estimates the number of passed rounds and sets a timer

for the next round (Line 8-9).
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Algorithm 1: Leader Election at node 𝑢

State :𝑢’s public key 𝐼𝐷𝑢 and secret key 𝑆𝐾𝑢 , 𝑢’s 𝑙𝑒𝑎𝑑𝑒𝑟 value

𝑙𝑒𝑎𝑑𝑒𝑟𝑢 , an array 𝑛𝑒𝑖𝑔ℎ𝑢 holding the most recent

(𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔)-tuple from each neighbor

1 upon start:
2 begin
3 𝑇 := 𝑡𝑖𝑚𝑒 ()
4 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 := 𝐼𝐷𝑢

5 𝑡𝑠 := 𝑇

6 𝑠𝑖𝑔 := 𝑠𝑖𝑔𝑛 (𝑆𝐾𝑢 , 𝑡𝑠)
7 broadcast (𝑙𝑒𝑎𝑑𝑒𝑟𝑢 , 𝑡𝑠, 𝑠𝑖𝑔)
8 𝑝𝑎𝑠𝑠𝑒𝑑 := ⌊ 𝑇

Δ𝑅
⌋

9 𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑟 (Δ𝐶 + (𝑝𝑎𝑠𝑠𝑒𝑑 + 1)Δ𝑅 )
10 upon timer:
11 begin
12 𝑇 := 𝑡𝑖𝑚𝑒 ()
13 𝑣𝑎𝑙𝑖𝑑𝑁𝑒𝑖𝑔ℎ := 𝑔𝑒𝑡𝑉𝑎𝑙𝑖𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠 (𝑛𝑒𝑖𝑔ℎ,𝑇 )
14 if |𝑣𝑎𝑙𝑖𝑑𝑁𝑒𝑖𝑔ℎ | > 0 then
15 𝑣𝑜𝑡𝑒𝑠 := 𝑝𝑖𝑐𝑘𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 (𝑣𝑎𝑙𝑖𝑑𝑁𝑒𝑖𝑔ℎ, 3)
16 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 :=𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑒 (𝑣𝑜𝑡𝑒𝑠)
17 𝑚𝑟𝑡 := 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 (𝑙𝑒𝑎𝑑𝑒𝑟𝑢 , 𝑣𝑎𝑙𝑖𝑑𝑁𝑒𝑖𝑔ℎ)
18 𝑡𝑠 :=𝑚𝑟𝑡 .𝑡

19 𝑠𝑖𝑔 :=𝑚𝑟𝑡 .𝑠𝑖𝑔

20 else
21 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 := 𝐼𝐷𝑢

22 if 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 = 𝐼𝐷𝑢 then
23 𝑡𝑠 := 𝑇

24 𝑠𝑖𝑔 := 𝑠𝑖𝑔𝑛 (𝑆𝐾𝑢 , 𝑡𝑠)
25 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 (𝑙𝑒𝑎𝑑𝑒𝑟𝑢 , 𝑡𝑠, 𝑠𝑖𝑔)
26 𝑠𝑒𝑡𝑇𝑖𝑚𝑒𝑟 (𝑇 + Δ𝑅 )
27 upon message (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔) from neighbor 𝑖:
28 begin
29 𝑛𝑒𝑖𝑔ℎ.𝑖 = (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔)

When the timer of a node 𝑢 fires, 𝑢 first computes those neigh-

bors whose most recently reported (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔)-tuple is valid
(Line 12-13). For the given set 𝑛𝑒𝑖𝑔ℎ of tuples and the given times-

tamp 𝑇 , the function 𝑔𝑒𝑡𝑉𝑎𝑙𝑖𝑑𝐸𝑛𝑡𝑟𝑖𝑒𝑠 returns only those tuples

from 𝑛𝑒𝑖𝑔ℎ which (1) hold a correct signature over 𝑡𝑠 for the given

leader ID and (2) whose timestamp does not differ by more than

Δ𝐶 +𝑀Δ𝑅 time units from 𝑇 . We call𝑀 the expiry parameter and
discuss suitable values for 𝑀 in Section 4.4. If none of the neigh-

bor tuples satisfies both aforementioned conditions, 𝑢 will reset its

𝑙𝑒𝑎𝑑𝑒𝑟 variable to its own identifier (Line 21). If at least one neigh-

bor reported a valid tuple, 𝑢 will locally perform three-majority

voting (Line 15-16). Using the function 𝑝𝑖𝑐𝑘𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚, 𝑢 will pick

three out of all valid tuples uniformly at random. Since it is possible

that a node only has one or two neighbors in the social overlay

network, 𝑝𝑖𝑐𝑘𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 may pick a neighbor multiple times. For a

given set 𝑣𝑜𝑡𝑒𝑠 containing three (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔)-tuples, the func-
tion𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑒 then checks whether at least two tuples hold

the same 𝑙𝑒𝑎𝑑𝑒𝑟 -value 𝐼𝐷 ′
. If this is the case,𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑒 returns

𝐼𝐷 ′
and otherwise,𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑒 picks one of the three tuples uni-

formly at random and returns the corresponding 𝑙𝑒𝑎𝑑𝑒𝑟 value. After

node 𝑢 has updated its 𝑙𝑒𝑎𝑑𝑒𝑟 variable, it looks up the most recent

timestamp and corresponding signature for this identifier among

all its valid neighbor tuples (Line 17). Given an identifier 𝑙𝑒𝑎𝑑𝑒𝑟 and

a set N of neighbor tuples, the function 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡 returns a

tuple (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡, 𝑠𝑖𝑔) from N such that 𝑡 = max(𝑙,𝑡𝑠,𝑠𝑖𝑔) ∈N{𝑡𝑠 | 𝑙 =
𝑙𝑒𝑎𝑑𝑒𝑟 }.

If at least one neighbor of 𝑢 considers 𝑢 to be the current leader

node, it is possible that𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑉𝑜𝑡𝑒 returns 𝑢’s own identifier. In

this case, 𝑢 must not use the timestamp collected by the 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝑅𝑒-

𝑐𝑒𝑛𝑡 function but instead propagate a new timestamp. Thus, after

the actual voting procedure, 𝑢 checks if it considers itself to be the

leader and if so, sets the timestamp to be propagated to its current

clock time (Line 22-24). Subsequently, 𝑢 sends its current 𝑙𝑒𝑎𝑑𝑒𝑟

value together with a corresponding timestamp and signature to

all its neighbors.

In contrast to the existing algorithms for Byzantine leader elec-

tion described in Section 2.1, our algorithm does not terminate

execution. However, in the absence of changes to the network

topology, it will eventually converge to a stable state.

4.4 Eventual Convergence
In this section, we prove that our algorithm eventually converges

to a stable state, assuming a non-bipartite graph. The key idea

is to show that the evolution of the network under Algorithm 1

corresponds to an absorbing Markov chain. Absorbing Markov

chains are guaranteed to converge towards an absorbing state, i.e.,

a state 𝑠 for which the transition probability to any state 𝑠 ′ is 1 for
𝑠 ′ = 𝑠 and 0 otherwise [20].

Theorem 1. Let𝐺 be a static graph that is non-bipartite, i.e., there
exists a cycle of length 2𝑘 + 1 for some natural number 𝑘 . If the expiry
parameter satisfies𝑀 ≥ 2𝐷 + 𝑘 − 1, Algorithm 1 eventually reaches
a state with 𝑙𝑒𝑎𝑑𝑒𝑟𝑢 = 𝑙𝑒𝑎𝑑𝑒𝑟𝑣 for all nodes 𝑢 and 𝑣 .

In the context of social overlays, we assume 𝑘 = 1, i.e., there is at

least one triangle, as social networks exhibit strong clustering [28].

Proof. For simplicity, we first consider a version of the algo-

rithm that does not use timestamps, which are purely included to

deal with topology changes. Afterwards, we explain why the result

holds even in the presence of timestamps.

We show that the Markov chain corresponding to the simplified

version is time-homogeneous, has absorbing states, and is aperiodic.

It then follows that theMarkov chain is absorbing and the algorithm

converges. For modelling the algorithm, we first enumerate the

nodes in the network as 𝑣1, . . . , 𝑣𝑛 . We define the state set 𝑆 as the

set of vectors of length 𝑛 with elements in ID. As indicated by the

timers, Algorithm 1 proceeds in rounds with each node adapting

its leader value once per round. Let (𝑆𝑡 )𝑡 ∈N0
with 𝑆𝑡 ∈ 𝑆 be the

random process representing the changes of the leader values.

All nodes change their leader values using three-sample voting

based solely on the leader value of the neighbors in the previous

round. As w assume that the topology and hence the sets of neigh-

bors remain the same, we have for all 𝑠, 𝑠 ′ ∈ 𝑆 and all 𝑡 > 0 that

𝑃 (𝑆𝑡 = 𝑠 ′ |𝑆𝑡−1 = 𝑠) = 𝑃 (𝑆1 = 𝑠 ′ |𝑆0 = 𝑠) .

In other words, the probability distribution of 𝑆𝑡 only depends on

𝑆𝑡−1 and do not change over time. So, (𝑆𝑡 )𝑡 ∈N0
is indeed a time-

homogeneous Markov chain.
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The Markov chain has absorbing states, namely all states when

all nodes have the same leader. It remains to argue that every non-

absorbing state can reach an absorbing state in a finite number of

steps, i.e., that the Markov chain is aperiodic.

We first consider a state 𝑠 such that at least two neighboring

nodes 𝑢 and 𝑣 have the same leader value 𝐼𝐷 . With a non-zero

probability, 𝑢 and 𝑣 both choose the other’s value as their new

leader and hence keep 𝐼𝐷 as their leader value. Also, all neighbors

of𝑢 and 𝑣 choose 𝐼𝐷 as their leader value with non-zero probability.

Given that all these nodes now have at least one neighbor with

leader value 𝐼𝐷 , it inductively follows that within 𝐷 rounds all

nodes can have 𝐼𝐷 as their leader value with non-zero probability.

Now, let 𝑠 ′ be a state such that neighboring nodes always have

distinct leader values. By assumption, there is at least one circle of

length 2𝑘 +1. Let𝑢1, . . . , 𝑢2𝑘+1 be nodes on such a circle:𝑢𝑖 and𝑢𝑖+1
are neighbors as well as 𝑢

2𝑘+1 and 𝑢1. With non-zero probability,

𝑢𝑘 and 𝑢𝑘+2 choose the leader value 𝐼𝐷𝑘+1 of 𝑢𝑘+1 in the next

round. In the following round, 𝑢𝑘−1 and 𝑢𝑘+3 then can choose 𝐼𝐷𝑘 .

By induction, we get that after 𝑘 rounds, 𝑢1 and 𝑢
2𝑘+1 have the

leader value 𝐼𝐷𝑘+1 with non-zero probability. So, there is a non-zero
probability to go from 𝑠 ′ to a state 𝑠 where two neighboring nodes

have the same leader value within 𝑘 rounds. It follows that there

is a non-zero probability to go from 𝑠 ′ to an absorbing that within

𝐷 + 𝑘 rounds for all states.

The inclusion of timestamps requires further assumptions to

allow for absorbing states. Timestamps need to be part of the state

information as an expired timestamp affects the transition proba-

bilities. In order to have absorbing states, we need to assume that

latencies are constant and rounds always of the same duration.

Then, we can replace each timestamp with a decreasing counter

indicating the rounds until it expires.

Now, the state space for Algorithm 1 consists of vectors in

𝑆 = ID × 𝑅 with 𝑅 = {0, . . . , 𝑀} being the number of rounds

until a timestamp expires. Thus, the Markov chain (𝑆𝑡 )𝑡 ∈N0
records

the leader value and rounds until expiry for the corresponding

timestamp of each node. As for the simplified version, (𝑆𝑡 )𝑡 ∈N0
is

time-homogeneous as the timestamp values of each round follow

from the values of the previous round.

It is not immediately obvious why (𝑆𝑡 )𝑡 ∈N0
has absorbing states.

Consider a state 𝑠 = ((𝑙1, 𝑟1), . . . , (𝑙𝑛, 𝑟𝑛)) such that 𝑙𝑖 = 𝑙 𝑗 for all

𝑖, 𝑗 . We claim that 𝑠 is an absorbing state if 𝑟𝑖 is the difference of

the maximal value𝑚 of the timestamp and the hop distance ℎ of 𝑣𝑖
to the leader. By Line 17 of Algorithm 1, each node selects the most

recent timestamp in its neighborhood. As a consequence, the leader

will always choose its own timestamp, which has the maximal value.

The claim follows by induction on the distance to the leader.

Concerning aperiodicity, first consider states 𝑠𝑡 such that at least

one node 𝑣 has its own ID as leader value. Then the corresponding

time until expiry of 𝐼𝐷𝑣 is𝑀 . As above, let 𝑢1, . . . , 𝑢2𝑘+1 be nodes
on a circle of length 2𝑘 + 1. We distinguish two cases: i) all nodes

𝑢𝑖 are at distance 𝐷 to 𝑣 and ii) at least one node 𝑢𝑖 has distance at

most 𝐷 − 1 to 𝑣 .

For the first case, there is a non-zero chance that all nodes on the

circle have the leader value 𝐼𝐷𝑣 after exactly 𝐷 rounds as the 𝑖-th

node on their path to 𝑣 can have after 𝑖 rounds. As detailed for the

simplified algorithm, 𝐼𝐷𝑣 can be the globally agreed-upon leader

after another 𝐷 rounds. In particular, after at most 2𝐷 ≤ 𝑀 rounds,

𝑣 can have its own ID as leader value again and start to generate

new timestamps. Once the optimal timestamps spread to all nodes,

an absorbing state is reached.

For the second case, the node 𝑢𝑖 can have 𝐼𝐷𝑣 as its leader value

within at most 𝐷 − 1 steps. After 𝑘 more rounds, two neighboring

nodes on the circle can have 𝐼𝐷𝑣 as their leader value, as for the

simplified version. From then onward, all nodes can have 𝐼𝐷𝑣 as

their leader value within 𝐷 rounds. As 𝐷 − 1+𝑘 +𝐷 = 2𝐷 +𝑘 − 1 =

𝑀 , the timestamp does not expire until 𝑣 starts generating new

timestamps. So again, the process can reach an absorbing state with

non-zero probability in a finite number of rounds.

In summary, the Markov chain (𝑆𝑡 )𝑡 ∈N0
is also absorbing and

hence Algorithm 1 converges. □

Note that Theorem 1 does not provide any bounds on the time

of convergence. Indeed, previous research on voting algorithms

indicates the existence of metastable phases [12]. In a metastable

phase, there are multiple leader values active in the graph but the

majority of nodes does not change their value for a long time.

As shown in the next section, metastable phases are common for

communities with few connections between them. In such a case,

each community sticks to one leader value and there is no global

consensus. While the above argument shows that Algorithm 1 will

eventually result in consensus and hence overcome the metastable

phase, the probability of overcoming such a state can be very low

and hence it can take a long time to escape it. Thus, for practical

reasons, there is a chance that the algorithm remains (seemingly)

stuck in such a state.

In the presence of malicious nodes that do not follow Algorithm 1

correctly, e.g., by never adopting the identifier of an honest node,

all honest nodes will eventually adopt the identifier propagated by

a malicious node, electing it as global leader. Due to the possibility

of reaching a metastable state however, it may actually take a very

long time until all honest nodes adopt such an identifier.

5 EMPIRICAL RESULTS
In previous work, three-majority voting has only been considered

for complete graphs. Thus, there exists no knowledge on how it

performs on realistic network topologies, in particular social graphs.

To evaluate the scalability and attack resistance of Algorithm 1, we

performed a simulation study that addresses the following research

questions:

(1) How does the topology of the network affect the convergence

of the election and the emergence of metastable phases?

(2) How does the likelihood of electing a malicious node relate

to the number of edges between honest and malicious nodes

as well as the network topology?

5.1 Data sets
To date, there are no snapshots of real-world social overlay net-

works like the Freenet [9] or Briar
1
available that can be used for

simulation. Since social overlay networks are explicitly designed to

prevent collection of information about its participants and their

connections, it is difficult to obtain topological information.

1
https://briarproject.org/, 2019-07-10
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Table 1: Properties of the graphs used for simulation, includ-
ing average degree 𝑑𝑒𝑔, diameter 𝐷 , average shortest path
length 𝑠𝑝𝑙 and modularity𝑀 .

Graph n 𝑑𝑒𝑔 𝐷 𝑠𝑝𝑙 𝑀

Facebook 63,392 25.8 15 4.32 0.62

SPI 9,222 10.58 12 4.67 0.62

Brightkite 56, 739 7.5 18 4.92 0.66

Ripple 67,149 2.9 15 3.82 0.69

Rand. Facebook 63, 392 25.8 8 3.58 0.15

Barabási-Albert (BA) 63, 392 25.9 5 3.32 0.17

Erdös-Renyi (ER) 63, 392 26 5 3.74 0.14

As social overlays represent social relationships, we instead uti-

lized data sets from popular online social networks. Themost impor-

tant characteristics of our data sets are summarized in Table 1. To

quantify the occurrence of community structure, Table 1 includes

an approximation of the modularity measure for each graph using

the algorithm of Blondel et al. [7]. Informally, a high modularity in-

dicates a higher prevalence of weakly interconnected communities,

i.e. communities with few edges between them.

Facebook denotes the largest connected component of a graph

obtained by crawling a part of the Facebook social network [36].

Similarly, SPI represents the largest connected component of the

users of an university online social network [29]. Brightkite denotes
a graph obtained from the Brightkite network, a location-based on-

line social network [8]. In all of these graphs, each node represents

a user account and each edge represents a friendship between two

users. The Ripple data set denotes a snapshot of the Ripple payment

network [31], where each node corresponds to a user account and

each edge represents a credit link between two accounts.

All of the aforementioned networks exhibit a significant com-

munity structure, as indicated by their high modularity value. To

evaluate the effect of community structure, we thus generated a

graph that has the same degree sequence as the Facebook graph,

but randomly chosen endpoints for each edge (thus called Random-
ized Facebook in the following). The resulting graph has a much

lower modularity value, indicating the absence of community struc-

ture. To investigate the impact of the network’s degree sequence,

we furthermore generated two graphs with the same number of

nodes and approximately the same number of edges as the Face-

book graph. The first graph, denoted as Erdös-Renyi (ER) in the

following, has normal distributed degrees [16]. The degree sequence

of the second graph, generated according to the Barabasi-Albert

(BA) model [2], follows a power law. In contrast to the real-world

graphs, the minimum degree of the BA graph is 13, giving it overall

better connectivity. Note that all graphs but the ER graph have a

power-law degree distribution.

5.2 Metrics
The agreement ratio quantifies the degree of consensus in a network:
Given a social overlay 𝑆 = (𝑉 , 𝐸), let 𝑛𝐼𝐷 (𝑡) be the number of nodes

that have set their 𝑙𝑒𝑎𝑑𝑒𝑟 value to 𝐼𝐷 at time 𝑡 . The agreement ratio

at time 𝑡 is then max𝐼𝐷∈ID
𝑛𝐼𝐷 (𝑡 )
|𝑉 | , where ID denotes the set

of all possible identifiers, as defined in Section 4. Informally, the

agreement ratio measures the largest fraction of nodes that consider

the same node as leader at time 𝑡 . In the following, we call the term

𝑛𝐼𝐷 (𝑡 )
|𝑉 | the popularity of 𝐼𝐷 at time 𝑡 . If the agreement ratio is higher

than 0.5, we say that the node owning the most popular ID is the

leader at that point in time.

As described at the end of Section 4.4, an attacker aiming to

establish a malicious node as leader may fail to do so in a reasonable

amount of time if the system enters a metastable phase. However,

the set of honest nodes that resists adoption of the malicious node’s

identifier may actually be very small. We thus consider the attacker

to be successful if at the end of the simulation, more than 50% of all

honest nodes hold the identifier of a malicious node in their 𝑙𝑒𝑎𝑑𝑒𝑟

variable. If this is the case, we say that the election failed in this

run. Otherwise, we say that the election was successful. For a given
number 𝑛 of simulation runs on a given network and a fixed set

of victim nodes, we approximate the probability that the majority

of honest nodes quickly adopts a malicious node as leader by the

failure ratio

𝑛𝑓

𝑛 , where 𝑛𝑓 denotes the number of failed runs.

5.3 Simulation model
Our simulation model is based on the OMNeT++ [34] framework.

We implemented Algorithm 1 and the above metrics pertaining to

its evaluation.

At the begin of a simulation run, we first create a network of

nodes according to the given network topology. Afterwards, each

node once generates a random 32-bit identifier that also corresponds

to its initial 𝑙𝑒𝑎𝑑𝑒𝑟 value. We then run Algorithm 1, excluding cryp-

tographic operations. As we consider a computationally bounded

adversary, the adversary is unable to break a computationally secure

digital signature scheme. Thus, we disregard attacks on the crypto-

graphic algorithms in our simulation and hence omit cryptographic

operations as they are irrelevant for the metrics of interest.

When simulating an attack, we modelled the attacker as a single

malicious node to indicate collusion. After picking 𝑔 nodes, we

connected all of them to the attacker. In the following, we call an

honest node that is connected to a malicious node a victim node.
The degree of victim nodes can potentially affect the effectiveness

of the attack as connecting to high-degree nodes indicates a more

central position in the network. Thus, our simulations evaluated

two strategies for choosing victim nodes: i) uniformly at random

without replacement and ii) nodes with the highest degree. If there

was more than one possible set for the 𝑔 nodes with the highest

degree for the considered graph, we only used a single set for our

simulations due to time constraints for our study.

During the simulation, the attacker node periodically broadcasts

a single adversary-chosen random identifier value with a fresh

timestamp. We consider this behavior to be realistic, because we

focus on an adversary that aims to maximize the chance that a

malicious node is elected quickly. Propagating different identifiers

over different links or changing the propagated identifier over

time causes these identifiers to compete with each other, which is

unlikely to improve over the aforementioned strategy.

5.4 Parameters
For all simulation experiments, we used 40 as the expiry parameter

𝑀 introduced in Section 4.3. All nodes update their 𝑙𝑒𝑎𝑑𝑒𝑟 value



ICDCN 2020, January 4–7, 2020, Kolkata, India Martin Byrenheid, Thorsten Strufe, and Stefanie Roos

50 150 250 350

0.0

0.2

0.4

0.6

0.8

1.0

No. of rounds

A
g
r
e
e
m
e
n
t
r
a
t
i
o

Brightkite

SPI

RippleBrightkite

SPI

RippleBrightkite

SPI

Ripple

50 150 250 350

0.0

0.2

0.4

0.6

0.8

1.0

No. of rounds

A
g
r
e
e
m
e
n
t
r
a
t
i
o

Facebook

Rand. Facebook

BA

ER

Facebook

Rand. Facebook

BA

ER

Facebook

Rand. Facebook

BA

ER

Facebook

Rand. Facebook

BA

ER

Figure 4: Obtained mean value of agreement ratio at differ-
ent round numbers. The bars around each point represent
99% confidence intervals.

at fixed intervals, which are chosen such that between two con-

secutive updates, all other nodes have updated their 𝑙𝑒𝑎𝑑𝑒𝑟 value

exactly once. Consequently, the time needed to reach consensus

depends linearly on the constants Δ𝐶 and Δ𝑅 . We thus focused on

the behavior of the system related to the number of synchronous

rounds and set Δ𝐶 and Δ𝐸 to zero and Δ𝐷 to one.

When evaluating attack resistance, we chose values from {50, 100,
150, 200, 250} as the number of attack edges 𝑔.

The simulation was terminated after 400 simulated rounds and

for the results in Section 5.5 averaged over 100 runs. The results in

Section 5.6 are averaged over 50 runs.

5.5 Impact of network structure
In the following, we first present our results regarding the impact of

the network’s degree sequence on the convergence of the election.

Afterwards, we discuss the effect of community structure.

Degree sequence. Figure 4 depicts the agreement ratio in relation

to the number of rounds. If the degree sequence follows a power law,

the election quickly achieves consensus among a large fraction of

nodes. After 100 rounds, all power-law graphs but the Ripple graph

on average reached an agreement ratio of above 90%. The Ripple

graph also achieved a high agreement ratio of 81.4%. In contrast to

networks with a power-law degree distribution, the leader election

proceeded much slower for the ER graph with normal distributed

degrees. After 200 rounds, just around 50% of nodes on average

consider the same node as leader.

The reason for the slow convergence of the ER graph lies in

the frequency of expiring timestamps. Shortly after the beginning

of the election, even the node 𝑢 owning the most popular ID was

likely to change its 𝑙𝑒𝑎𝑑𝑒𝑟 value to a different ID. While the former

occurred on all graphs, the election generally progressed faster on

the power-law graphs, such that 𝑢 re-adopted its own ID as 𝑙𝑒𝑎𝑑𝑒𝑟

value before the corresponding timestamps expired. Because the

𝑙𝑒𝑎𝑑𝑒𝑟 value of a node with high degree more strongly increases

in popularity than the 𝑙𝑒𝑎𝑑𝑒𝑟 value of a node with low degree, the

existence of few nodes with very high degree in power-law graphs

results in a strong bias towards the 𝑙𝑒𝑎𝑑𝑒𝑟 value held by latter nodes,

quickly ruling out other identifiers. Due to the lower variance in

node degrees, the election on the ER graph requires more time

until the most popular ID becomes sufficiently more popular than

all other identifiers. Thus it was unlikely that the node owning
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Figure 5: Obtained mean number of leader changes at con-
secutive intervals of 50 rounds. The bars around each point
represent 99% confidence intervals.

the most popular ID re-adopts its identifier from a neighbor soon

enough to prevent expiration of timestamps. Since social networks

generally have a power-law degree distribution, in practice they

are not affected by the slow convergence in networks with normal

distributed degrees.

Although the agreement ratio on the Ripple graph increased

nearly as fast as on the other power-law graphs, the most popular

identifier changed almost every round throughout the simulation.

For consecutive intervals of 50 rounds, Figure 5 shows the mean

number of times the most popular ID changed in each interval

for the different settings. Except for the Ripple graph, the number

of leader changes dropped within the first 100 rounds, meaning

that the leader chosen by the majority of nodes does not change

anymore over time.

The oscillating behavior of the Ripple graph results from its

strong Hub-and-Spoke structure where 71.25% of all nodes have a

degree of 1 and three nodes have a degree higher than 10,000. If

a node 𝑢 with an ID 𝐼𝐷 as leader value has many neighbors with

degree 1 that in turn have a different ID 𝐼𝐷 ′
as 𝑙𝑒𝑎𝑑𝑒𝑟 value, it is

highly likely that𝑢 will adopt 𝐼𝐷 ′
as 𝑙𝑒𝑎𝑑𝑒𝑟 value in the next round.

At the same time however, given that 𝑢’s current (𝑙𝑒𝑎𝑑𝑒𝑟, 𝑡𝑠, 𝑠𝑖𝑔)-
tuple is valid, every neighbor of 𝑢 with degree 1 will adopt 𝐼𝐷 in

the next round with probability 1. Given a high enough number

of nodes with degree 1, the node owning 𝐼𝐷 now replaced 𝐼𝐷 ′
in

its role as the leader. In the next round, the same behavior again

causes the node owning 𝐼𝐷 ′
to become the leader and so on.

However, since the Ripple graph represents a payment network,

we believe that most of the nodes with only one neighbor represent

inactive users that just performed one single transaction. For more

popular overlay networks, we consider such a strong Hub-and-

Spoke-structure to be unlikely and thus leave a corresponding

adaptation of the algorithm for future work.

Community structure. Although the agreement ratio initially

grows quickly for all networks whose degree sequence follows a

power law, there are notable differences regarding its long-time

behavior between the graphs with high modularity and those with

low modularity. On the graphs with low modularity, namely the

randomized Facebook graph and the BA graph, the agreement ratio

reached 1.0 after at most 105 and 124 rounds, respectively for all

100 runs. On some runs on the graphs with high modularity, the

election entered a metastable phase as described in Section 4.4.



Attack resistant Leader Election in Social Overlay Networks by Leveraging Local Voting ICDCN 2020, January 4–7, 2020, Kolkata, India

0 20 40 60 80

0.80

0.85

0.90

0.95

1.00

Facebook

100

A
g
r
e
e
m
e
n
t
r
a
t
i
o

0 20 40 60 80

0.80

0.85

0.90

0.95

1.00

SPI

100

0 20 40 60 80

0.90

0.92

0.94

0.96

0.98

Brightkite

100

A
g
r
e
e
m
e
n
t
r
a
t
i
o

Run index

0 20 40 60 80

0.65

0.75

0.85

0.95

Ripple

100

Run index

Figure 6: Agreement ratio after 400 rounds for the different
networks, ordered by agreement ratio.

Figure 6 shows the agreement ratio at the end of each simulation

run, i.e. after 400 rounds, for all graphs with high modularity. The

results for the different runs are ordered according to the agreement

ratio. Out of all 100 runs for the Facebook graph, the system entered

a metastable phase at an agreement ratio around 0.8 in 18 runs. In

all other runs, the agreement ratio at the end of the simulation was

at least 0.998. In 20 runs, the agreement ratio reached 1.0 before

the end of the simulation. The fact that there are no runs with an

agreement ratio between 0.81 and 0.998 on the Facebook graph

suggests that there is a community consisting of around 20% of all

nodes which only has few edges to nodes outside this community.

The runs that reached an agreement ratio between 0.998 and 1.0

furthermore indicate the presence of very small communities with

few edges to the rest of the graph.

Similar to the Facebook graph, there is a notable of set of runs on

the SPI graphwhere the network only reached an agreement ratio of

0.8, indicating a community with around 20% of all nodes. In 9 runs

however, the agreement ratio was between 0.91 and 0.97 at the end

of the simulation. During these runs, the agreement ratio quickly

increased to a value of approximately 0.8 within the first 100 rounds

and afterwards grew slowly, meaning that no notable metastable

phase occurred. However, because most of the remaining nodes

already agreed on a different leader, it took more time until they

changed their 𝑙𝑒𝑎𝑑𝑒𝑟 value to the most popular identifier.

While for the SPI graph, the agreement ratio reached 1.0 in 63

out of 100 runs, it did not reach 1.0 in any of the runs on the Ripple

and the Brightkite graph. As suggested by their higher modularity

score, the Brightkite and the Ripple graph contain a notably stronger

community structure than the Facebook graph and the SPI graph.

However, our results show that still more than 80% of all nodes on

these graphs are part of communities with sufficiently many edges

between them, such that the weakly interconnected communities

are comparatively small. For the Brightkite graph, the agreement

ratio at the end of the simulation was at least 0.89 and the gap

between 0.92 and 0.96 indicates that the largest community with

few edges to other communities contains around 4% of all nodes.

All other communities contain less than 1% of all nodes.

Similarly, all but one run on the Ripple graph reached an agree-

ment ratio of at least 0.84 and the gaps displayed in Figure 6 suggest

that the communities that failed to adopt the most popular identi-

fier are rather small. In the run where the system only reached an
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Figure 7: Obtained mean failure ratios for the Facebook
graph, its randomized version and the BA graph, for a vary-
ing number of attack edges and uniformly (U) as well as
highest-degree (H) victims. The bars below and above each
mean value represent 95% confidence intervals.

agreement ratio of around 0.65, the timestamps related to the most

popular identifier expired near the end of the simulation, causing a

large number of nodes to reset their state.

Summary. Our results show that the structure of the network

has a strong impact on the convergence of our leader election

algorithm. In particular, a higher heterogeneity regarding node

degrees drastically reduces the time needed until the majority of

nodes agrees on a common leader. However, in the extreme case

that around 70% of all nodes have only one neighbor, the actual

leader identifier is likely to oscillate heavily.

Furthermore, the presence of weakly interconnected communi-

ties may cause the election to enter a metastable phase. While the

community structure of the datasets used for our study often kept

our algorithm from reaching consensus among all nodes, still more

than 80% of all nodes quickly reached consensus on a single leader.

5.6 Attack resistance
Now, we address the attack resistance of Algorithm 1 when mali-

cious nodes aim to bias the election towards choosing a malicious

node as the leader. Our evaluation focuses on the Facebook graph,

its randomized version as well as the BA graph. We excluded Ripple

and the ER graph as Algorithm 1 is unsuitable for these graphs

even in the absence of malicious nodes, as indicated by Section 5.5.

Figure 7 shows the obtained failure ratios for a varying number 𝑔

of victim nodes. For randomly selected victim nodes, each point de-

notes the mean value of the failure ratio over 30 different randomly

chosen sets of 𝑔 nodes. For each of these sets, we performed 50

simulation runs to approximate the failure ratio for this particular

set of victim nodes. For maximum-degree victim nodes, there is

only one set of 𝑔 nodes and we performed 100 runs to approximate

the failure ratio for this set. The difference in the confidence be-

tween the two cases hence follows from the different total number

of runs, as the decisive factor of randomness seems to be in the

voting process rather than in the selection of the victim set.

Irrespective of how the victim nodes were chosen, there is a

notable difference regarding the mean failure ratio between the
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different graphs. For every simulated number of attack edges, the

mean failure ratio for the Facebook graph was significantly lower

than for the two synthetic graphs. However, the decrease of the fail-

ure ratio over the randomized Facebook graph due to the presence

of community structure is negligible. In the scenario that victim

nodes were selected randomly, the system entered a metastable

phase where the popularity of the malicious node’s ID remained

close to 0.2 in at most 18 out of the total of 1500 runs for each num-

ber of edges. When the highest degree nodes were chosen as victim,

such a metastable phase occurred only in at most 3 out of the 100

runs for each number of edges. From these results, we conclude

that the presence of community structure does not significantly

contribute to the attack resistance of our algorithm.

Instead, the mean failure ratio shows a strong negative correla-

tion with the average shortest path length of the network. A high

average shortest path length causes a slower spread of the malicious

ID and this might indeed be related to the attack resistance.

When the number of attack edges was at most 200, the selec-

tion of high degree nodes as victims did not result in a significant

increase for the mean failure ratio over random selection. While

the difference for 250 attack edges is significant, there is no gen-

eral rule that preferring high-degree nodes as victims increases the

strength of the attack. We furthermore consider it to be unrealistic

in practice that an attacker can compromise such a number of the

highest degree nodes.

Summary. The second part of our evaluation showed that the

presence of community structure does not contribute significantly

to the attack resistance of our algorithm. Our results suggest that the

probability that a malicious node becomes the leader is positively

correlated with the average shortest path length of the network. For

the investigated real-world graph, an adversary without knowledge

of the network structure needs to establish at least 250 attack edges

to achieve a 50% chance that one of his nodes will be elected as

leader. Furthermore, it turned out that the degree of the victim

nodes does not play a decisive role for the chance that a malicious

node becomes the leader.

6 CONCLUSION
In this work, we proposed a leader election algorithm for large-scale

dynamic networks that utilizes three-majority voting to achieve

consensus among the majority of nodes. Rather than requiring a

low number of malicious nodes, our solution works if the number

of links between honest and malicious nodes is low. Our algorithm

employs cryptographically signed timestamps to react to failed

leaders and prevent impersonation. An extensive simulation study

indicates fast consensus for the majority of nodes in social networks

as well as a high resistance to attacks.

An interesting area for future work is to combine our leader elec-

tion with a distributed spanning tree protocol, which can be then be

leveraged for privacy-preserving, efficient, and secure routing [30].
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