
Secure Embedding of Rooted Spanning Trees for
Scalable Routing in Topology-Restricted Networks

Martin Byrenheid
TU Dresden

martin.byrenheid@tu-dresden.de

Thorsten Strufe
KIT Karlsruhe

Centre for Tactile Internet / TU Dresden
strufe@kit.edu

Stefanie Roos
Delft University of Technology

s.roos@tudelft.nl

Abstract—Greedy embeddings on rooted spanning trees are the
most promising solution to provide sufficiently scalable routing
in dynamic networks with restricted topologies, for instance
friend-to-friend overlays such as the Dark Freenet and payment
channel networks such as Lightning. Yet, they are not deployed
in practice, as electing a root and configuring addresses remains
an unsolved problem in adverse environments. Indeed, faulty or
malicious nodes might provide incorrect coordinates, prevent the
network from stabilizing by simulating dynamics, or not start
the assignment of coordinates in their subtree at all. All of the
above attacks may result in an inability to route.

To mitigate the above attacks, we design a novel embedding
algorithm with an adapted distance metric that only relies on
interconnections between benign subtrees for successful delivery.
In other words, even if roots of (sub-)trees are malicious or faulty,
the remaining nodes still receive coordinates and can communi-
cate with nodes in their tree branch as well as other branches
reachable via the neighborhood of their benign ancestors.

Extensive simulations demonstrate that we thus facilitate effi-
cient routing even when seemingly decisive parts of the network
are under adversarial control.

I. INTRODUCTION

Many overlay networks have connectivity restrictions. De-
velopers in some cases aim to protect the privacy of users and
reduce the risk of Sybil attacks by only connecting to trusted
nodes. Anonymous and censorship-resistant publication is one
key application of such overlays [5]. Another important use
case are payment channel networks like Bitcoin’s Lightning
network that route payments only via links established by
locking collateral on the blockchain [18], which leads to
another highly restricted topology. Alike censorship-resistant
publication, payment services should be resistant to attacks, as
well as fast. For both applications, greedy network embeddings
present the most promising solution to find low-stretch paths
at a low overhead [20], [21].

Greedy embeddings rely on the assignment of a unique
logical coordinate to every node, based on a rooted spanning
tree. In a decentralized and dynamic network, the embeddings
need flexibility to adapt coordinate lengths [8], [9], as they
cannot collect global topology information. In the absence of
a trusted entity that runs root nodes, existing solutions either
resort to performing distributed leader election [20] or – if
the overall number of nodes is known – having each node
randomly decide whether to operate as root node [14], [24].

Controlling the root is desirable for an attacker, as the cur-
rent method that protects from interference with the spanning-
tree construction, the fundamental functionality to configure
the entire network, relies on the root node to be benign [3].
However, we argue that in the presence of network dynamics
and malicious nodes interfering with the protocol execution,
distributed root election algorithms cannot guarantee success-
ful choice of a root that is non-malicious. Due to the absence of
a central authority for admission control, the adversary may
create a large number of fake nodes, for each of which he
may simulate arbitrary behavior. By owning a large fraction
of all nodes in the overlay, the attacker can drastically increase
the chance of being elected. Even when running multiple
instances of the routing protocol in parallel, control over all
roots falling to the adversary cannot be avoided. Thus, in
topology-restricted overlay networks, the embedding and rout-
ing algorithm need to be tolerant to malicious root behavior.

In this paper, we first analyze the types of attacks that an
attacker can perform when they are the root node in a greedy
embedding and might control additional nodes. Previous work
already evaluated the impact of the attacker dropping messages
and showed that having multiple embedding instances can
counteract such denial-of-service attacks effectively [20]. In
contrast, we define attacks that modify the coordinate assign-
ment by i) assigning incorrect coordinates, ii) keeping the
assignment from converging by simulating constant churn and
consequently changes in the assignment, and iii) not initiating
the assignment (which is commonly the responsibility of the
root in such embeddings).

Having argued that these three attacks are the key vul-
nerabilities, we present two defenses. First, we modify the
embedding by limiting the coordinate length to mitigate an
attack that causes high routing overhead through assigning
too long coordinates. Second, we adapt the distance measure
between nodes to facilitate local routing even if coordinates on
the path between a node and the root are incorrect or outdated.
Furthermore, we explain how our defenses can be combined
with existing leader election algorithms such that nodes are
guaranteed to obtain coordinates.

We prove that our modified embedding still guarantees
successful routing in the absence of attacks. Our simulation-
based evaluation shows that our embedding improves the
attack resistance considerably. Indeed, for both synthetic and

real-world network topologies, our embedding reduces the
number of failed routings by at least a factor 2.

Thus, we notably improve the attack resilience of
greedy embeddings, making them a suitable candidate for
connectivity-restricted networks that require both high effi-
ciency and resistance to denial-of-service attacks.

II. RELATED WORK

We summarize the existing work on tree-based network
embeddings in terms of their resilience to attacks.

In the context of Internet routing, existing research on
tree embeddings focuses solely on robustness against crash
failures. Sahhaf et al. [22] proposed the usage of colored
trees [19] and the proactive construction of backup paths to
enable successful delivery in case of a single link failure or
node crash. Later on, Sahhaf et al. proposed a new embed-
ding algorithm that adapts to network dynamics and crash
failures [23]. In this algorithm, nodes explicitly notify their
neighbors in case of a failure in order to adapt the embedding.

To increase routing success in the presence of link and
node failures, Houthooft et al. [10] proposed a distributed
algorithm that constructs multiple embeddings in parallel. The
choice of parents depends on a cost function. It considers the
length of the coordinates and the number of trees in which
this neighbor is already a parent. Based on the weight of
each factor, a trade-off can be made between fault-tolerance
and routing path length. The authors later extended their
algorithm such that it also takes link loads into account during
construction [11]. Again, malicious behavior with regard to,
e.g., reporting coordinates, is not addressed.

In the context of friend-to-friend overlays, Höfer et al. [9]
proposed a modified variant of the embedding by Herzen et
al. [8] to enable distributed content storage. As this work
does not address faults or attacks, Roos et al. [20] extended
the embedding algorithm to provide robustness against faults
by constructing multiple parallel embeddings and using back-
tracking during routing. Furthermore, the authors showed
that their embedding enables a high routing success ratio
in the presence of nodes that drop received packets, even
if the malicious nodes are root nodes. However, it is left
open to which extend malicious participants can increase
the effectiveness of their attacks by actively interfering with
the embedding construction. SpeedyMurmurs, an extension of
the embedding specific to payment channel networks, allows
privacy-preserving routing but its evaluation does not consider
denial-of-service attacks [21].

Sun et al. [25] proposed a data sharing framework for friend-
to-friend overlays that uses greedy embeddings for routing.
Data publishing is designed such that any new content first
passes a universally trusted (or as they call it, secure) node
that checks if this message may be part of an attack. However,
the authors leave open how to select trusted nodes and assume
that the root node of the embedding is a trusted node.

In summary, existing work on tree embeddings focuses on
crash faults of nodes or links. Constructing multiple parallel
embeddings protects against malicious participants that drop

any incoming messages, but active attacks against the con-
struction of the embedding have not yet been addressed.

III. MODEL AND NOTATION

In the following, we present our system model together with
the necessary terminology, followed by a description of the
adversary model considered in this work.

A. System Model and Terminology

We model a topology-restricted overlay network with bidi-
rectional connections at a fixed point in time as an undirected
graph O = (V,E), where V denotes the set of nodes and
E denotes the set of connections between them. Connected
nodes communicate by message passing. However, we con-
sider reordering and loss of messages due to failures of the
underlying infrastructure out of scope, as we focus on attacks
by malicious overlay participants.

The network is dynamic, such that nodes may join or leave
the overlay network at any time. Furthermore, nodes may
establish or tear down connections to other nodes over time.
In the following, we call a change of the overlay network a
churn event. Nodes may also crash, thus leaving the network
without notifying their neighbors about their departure.

In our setting, nodes do not have a priori knowledge
about the number of nodes |V | or the number of edges |E|.
However, we assume that all nodes know an upper bound D
on the diameter of the network, which we later use to defend
against the propagation of maliciously chosen coordinates by
attackers. We consider this assumption to be realistic for
networks with trust-based connectivity restrictions, as their
structure resembles the social graph of its participants and
previous studies indicate that even social graphs with millions
of nodes have a diameter below 30 [15].

Currently known greedy embeddings rely on the construc-
tion of a rooted spanning tree to enable routing. Given an
overlay O = (V,E), a rooted spanning tree of O is a tuple
T = (VT , ET , r) such that r ∈ V and (VT , ET) is a connected
subgraph of O with VT = V , ET ⊆ E and |ET | = |V | − 1.
Node r is called the root node of T .

For every node u ∈ V \ {r}, there is only a single path
from u to r in (VT , ET). Given such a path u, v1, v2, .., vk, r
in (VT , ET), we say that v1 is the parent of u and that u is
a child of v1. We call the nodes vi, i ∈ {1, 2, .., k} ancestors
of u and for each vi, we say that u is a descendant.

Furthermore, we denote the length of the path from u to
the root r as the level of u. In the following, we refer to the
number of edges on the longest path from r to any node in
(VT , ET) as the depth of the spanning tree.

B. Greedy network embeddings

Routing based on greedy network embeddings relies on two
core parts: an embedding algorithm and a distance metric.
Given a coordinate space ID, the embedding algorithm assigns
a unique logical coordinate from ID to every node. In the
following, we refer to such an assignment via a function C :
V → ID that maps each node to its logical coordinate.

The distance metric then defines the distance between two
logical coordinates and thus also serves as measure of distance
between nodes. An assignment of logical coordinates to nodes
is called a greedy embedding if greedy routing, i.e., forwarding
the message to the neighbor whose logical coordinate has the
lowest distance to the coordinate of the target, is guaranteed
to succeed.

In this work, we focus on vector-based coordinates of
varying length, i.e., ID = S∗ for some set S. The assignment
is executed in a fully distributed manner as follows: First,
a single node r out of all nodes in the network is selected
and receives a coordinate. Starting from r, a spanning tree
of the network rooted at r is constructed. Children receive
a coordinate that is the parent coordinate and one additional
element. In other words, whenever a node u becomes the child
of another node v with logical coordinate (c1, c2, .., ck), u’s
coordinate is of the form (c1, c2, .., ck, cu) for some cu ∈ S.
Thus, the vector assigned to u encodes a path from u to the
root node [8], [9], [20].

Since a rooted spanning tree is a connected subgraph over
the entire network, all nodes can reach each other by routing
over the tree edges. Thus the distance between two logical
coordinates C1 and C2 is given by means of the tree distance

δTD(C1, C2) = |C1|+ |C2| − 2 · CPL(C1, C2) (1)

, where CPL(Cx, Cy) denotes the length of the common
prefix of Cx and Cy .

However, the routing of messages is not limited to tree edges
only. When routing a message to a coordinate Ct, nodes do not
only consider the distance of the logical coordinates of their
parent and children to Ct but those of all their neighbors in the
network. In the following, we call non-tree edges shortcuts, as
these links can be used to reduce the number of hops needed
to reach Ct.

C. Adversary model

In this work, we consider an adversary that aims to perform
a large-scale denial of service attack against the overlay
network. For overlay networks such as Freenet or GNUnet,
the adversary might be a malicious actor that aims to perform
censorship. In Lightning, the attacker might want to block
payments such that parties make use of other payment methods
with higher fees.

We consider an internal attack, where the adversary controls
a subset of the nodes in the overlay. In the following, we call
nodes under control of the adversary malicious nodes and the
remaining nodes are called benign nodes.

As the initial setup of connections in topology-restricted
overlay networks requires prior social engineering, which
we assume to be costly to perform on a large-scale, the
adversary can only establish a bounded number of connections
between malicious and benign nodes. In the following, we call
connections between malicious and benign nodes attack edges.

The malicious nodes may deviate arbitrarily from the correct
behavior, e.g. by dropping and delaying messages or spreading
misinformation. In particular, we consider the scenario that the

Fig. 1: The adversary is able to introduce fake nodes (indicated
by transparency) with arbitrary interconnections. Thus, the
root node, marked by a dashed line, may also be a fake node.

malicious nodes are able to undermine the election of the root
node, thus establishing a malicious node as root.

Since we do not assume a centralized admission control, the
adversary is furthermore able to simulate additional, arbitrarily
interconnected nodes in the network, as illustrated by Figure 1.
In the following, we call the network of adversary-controlled
nodes together with the simulated nodes the adversarial region
of the overlay. The network of non-adversarial nodes is called
the benign region of the overlay.

However, we assume that the adversary does not have any a
priori knowledge about the total number of benign nodes and
their connections. Rather, he is initially only aware of those
benign nodes that are connected to malicious nodes. He is
furthermore non-adaptive in the sense that he establishes his
connections initially and does not add or remove connections
later.

IV. ATTACKS AND COUNTERMEASURES

Given that our adversary can only establish a bounded
number of attack edges to benign nodes, the adversary uses
these edges to perform active attacks in order to maximize the
disruption of communication. In the scenario that a malicious
node has been elected as root, as shown in Figure 1, the
attacker can perform different attacks by varying the length
and elements of the logical coordinates sent via the attack
edges as well as the timing of these messages.

Given these attack vectors, the adversary may perform the
following attacks:

1) Coordinate duplication: Malicious nodes propose the
same logical coordinate to multiple benign neighbors.

2) Simulate high diameter: Malicious nodes announce
extremely long coordinates to their benign neighbors.

3) Simulate high dynamics: Malicious nodes simulate
extreme dynamics in the adversarial region by repeatedly
announcing different logical coordinates to their benign
neighbors.

4) Simulate root fault: Malicious nodes never announce
any logical coordinates to their benign neighbors, thus
pretending to have lost connectivity to the root node
after the election.

The first attack causes routing to fail, as the assignment of
logical coordinates is not unique anymore, such that benign
nodes forward messages to the wrong nodes. However, we

merely include this attack for completeness, as it has already
been addressed by Roos et al. [20] by having child nodes
obtain their coordinate by appending a random number to the
coordinate of their parent.

The second attack does not cause routing to fail, but instead
introduces extremely high bandwidth overhead due to exces-
sively long addresses, which significantly lowers throughput.

In the presence of a malicious root node, routing between
different subtrees depends the usage of shortcut links. By
sending coordinates with different lengths over each attack
edge, the third attack causes the benign nodes to frequently
change their parents and consequently their logical addresses.
As a result, the target coordinate of messages that are in transit
become outdated and are routed towards the malicious root
node, as benign nodes are unable to detect shortcuts.

In case of the fourth attack, benign nodes will not obtain any
logical addresses, thus making routing of messages impossible.

One intuitive countermeasure that limits the damage caused
by the aforementioned attacks is to periodically start a new
election after a fixed amount of time, starting from a common
fixed date. However, while a shorter election period reduces
the timespan of the attacks, it also inherently causes higher
overhead in the absence of attacks. It is thus desirable to design
countermeasures that limit the damage caused by malicious
nodes while one of them still acts as root node.

A. Identifier-Embedding with Bounded-Length Coordinates

Let our coordinate space be ID =
(
{0, 1}b

)∗
, i.e., the set of

all vectors with b-bit elements. To address the aforementioned
attacks, we modify the assignment of logical coordinates as
follows: Upon startup, every node u generates a persistent,
random virtual identifier V IDu ∈ {0, 1}b. If u becomes the
root node, it will use (V IDu) as coordinate rather than an
empty vector as in previous algorithms [8], [9]. If u does
not become the root node, u chooses a neighbor v with
coordinate (c1, c2, .., ck), where ck = V IDv , as parent and
uses (c1, .., ck, V IDu) as its own coordinate. If v later on
changes its coordinate to (c′1, c

′
2, .., c

′
k′−1, V IDv) but remains

the chosen parent for u (e.g., because it still has the shortest
coordinate among u’s neighbors), then u adjusts its own
coordinate to (c′1, c

′
2, .., c

′
k′−1, V IDv, V IDu).

Figure 2 shows an example, where the adversarial nodes
simulate churn to cause non-adversarial nodes to change their
coordinates. Due to the identifier-based coordinate computa-
tion, all nodes in the subtree rooted at u only change a prefix
of their coordinate.

In our modified embedding, the root node r includes V IDr

in its coordinate. If there is no attack, the longest coordinate
in a spanning tree of depth d will thus have d+ 1 elements.

Without an upper bound on the maximum depth of the
rooted spanning tree in the overlay, it is impossible to defend
against the case that malicious nodes announce extremely
long coordinates, as there is no criterion based on which
the length of the logical coordinates can be limited. Given
that the nodes in our setting know the upper bound on the
network diameter D, which also serves as upper bound for

(a) Before the simulated churn event. (b) After the simulated churn event.

Fig. 2: For pretended failures in the adversarial region, benign
nodes only change the prefix of their coordinates. Black lines
denote tree edges and grey lines shortcut edges.

Fig. 3: High diameter attack (D = 5). For malicious prefix
choice, u’s neighbor has a coordinate with maximum length.
To u it is opaque if the neighbor or an ancestor is malicious.

the depth of the constructed spanning tree, it is a sign of
an ongoing attack when the shortest virtual coordinate in a
node’s neighborhood has length D + 1 or more. However, as
illustrated by Figure 3, a node recognizing this situation is not
able to tell which node along the path to the root actually is
acting maliciously. Therefore, our embedding algorithm adapts
to this situation as follows: If a node u chooses a node v
with logical coordinate Cv = (c1, c2, .., cD+1) as parent, node
u removes the first element from Cv before appending its
identifier, yielding Cu = (c2, c3, .., cD+1, V IDu) as its own
coordinate. In the scenario shown in Figure 3, node u will
thus use (5, 7, 4, 8, 1, V IDu) as logical coordinate.

If the adversary simulates a high diameter, the spanning
tree algorithm should ideally guarantee for every benign node
u that the depth of the subtree rooted at u never exceeds
D. Otherwise, routing is not guaranteed to be successful.
Unfortunately, it can be shown that when parent selection
is done solely based on the logical coordinates of a node’s
neighbors, it is impossible to provide this guarantee in general,
as illustrated by Figure 4.

To reduce the likelihood that the subtree rooted at a benign
node exceeds the diameter bound, we introduce the heuristic
that if two neighbors have one or more common ancestors,
nodes prefer the neighbor closest to the nearest common an-
cestor. If neighbors of a node u have non-distinct coordinates
with maximum length, this heuristic ensures that u prefers
neighbors close to the node with the overlapping identifier. For

Fig. 4: Example: Depth of subtree rooted at a benign node
exceeds the diameter bound (D = 3). Arrows denote tree
edges with parent-child relationships, color indicates a distinct
benign subtree. Grey edges denote shortcut links. As the
coordinates of v and w are distinct and of equal length, both
are equally well-suited as parent for u. If u randomly chooses
w as parent, the depth of the subtree rooted at x exceeds D.

example, consider the case that v instead chose x as parent in
the setting shown in Figure 4 and thus obtained (4, 13, 2, 12)
as coordinate. Then, u would detect that v is a child of the
node with identifier 2, whereas w with coordinate (2, 9, 8, 1)
is 3 hops apart from the node with identifier 2 and thus u
would prefer v as parent.

B. Overlap Routing

We now consider a way to use the overlap between coor-
dinates as an indicator of the distance. In our algorithm, we
rely on distances between nodes or more specifically node
coordinates. Generally, a distance function should map two
node coordinates to a non-negative real number. We slightly
modify the concept such that the distance function can fail to
compute a distance but only in the presence of an attack.

Definition 1. Let ID be a set of potential node coordinates.
A function δ : ID × ID → R+ ∪ {⊥} is called an attack-
aware distance function if δ(V ID1, V ID2) = ⊥ indicates
that V ID1 and V ID2 can not both be valid coordinates in
the same embedding.

For two coordinates Cu = (cu1 , c
u
2 , .., c

u
k) and Cv =

(cv1, c
v
2, .., c

v
l), we write Cu ∩Cv to denote the set of common

elements, i.e., Cu ∩ Cv = {c | ∃1 ≤ i ≤ k, 1 ≤ j ≤ l : cui =
cvj}. Furthermore, let s(Cu, c) denote the suffix of Cu starting
with element c. We define the function δ(Cu, Cv) as follows:

δ(Cu, Cv) ={
min

c∈Cu∩Cv

|s(Cu, c)|+ |s(Cv, c)| − 2 if Cu ∩ Cv 6= ∅

⊥ otherwise

We write δ(u, v) := δ(Cu, Cv) for simplicity.
δ is not a distance function as it does not necessarily return

real numbers. However, if δ returns ⊥ for all coordinates in
u’s neighborhood (including its own), then u does not drop
the packet but instead forwards it to its parent.

We now show that in the absence of attacks, network
dynamics and duplicate virtual identifiers, δ results in a
greedy embedding, similar to [8], [9]. Hence, the routing is
guaranteed to succeed in a stable and attack-free network.

Theorem 1. δ is an attack-aware distance function in the
sense of Definition 1. Furthermore, given that every node u
in the overlay has a unique virtual identifier V IDu as well
as a correct upper bound D for the overlay diameter and all
nodes are benign, the identifier-based embedding algorithm
produces a greedy embedding.

Proof. Recall that the root coordinate is (V IDr) and, since D
is larger than the network’s diameter, every node’s coordinate
contains the root identifier V IDr as the first element. Hence,
in the absence of attacks, δ does not return ⊥ and thus is a
distance function.

To show that an embedding is greedy, it is sufficient to
show that each non-terminal hop has a neighbor closer to
the destination [13]. In the following, we write parent(u) to
denote the parent of node u in the underlying spanning tree.

Let t denote the target and u 6= d a node. We need to show
that u has a neighbor v such that δ(v, t) < δ(u, t). As stated
above, u’s coordinate shares at least the first element with
t’s coordinate. In the absence of attacks, a node’s coordinate
corresponds to the parent coordinate and one additional ele-
ment. Hence, if Ct does not contain V IDu, it shares the same
prefix with parent(u) as with u itself but has a shorter suffix.
As a consequence, δ(parent(u), t) < δ(u, t). It remains to
consider the case that Ct contains V IDu. As there are no
duplicate identifiers and t 6= u, sharing the identifier indicates
that t is a descendant of u. By construction of the coordinates
Ct has to contain the identifier V IDv of one of u’s children
v. So, the last common element between t and u is V IDu and
the last common element for t and v is V IDv . Since v is the
child of u, it holds that |s(Ct, V IDv)| = |s(Ct, V IDu)| − 1.
In other words, the last common element between t and
v appears later in Ct and hence has a smaller suffix. As
|s(Cv, V IDv)| = |s(Cu, V IDu)| = 1, we have

δ(v, t) = |s(Cv, V IDv)|+ |s(Ct, V IDv)| − 2

= 1 + (|s(Ct, V IDu)| − 1)− 2

= |s(Ct, V IDu)| − 2

= δ(u, t)− 1

This completes the proof.

C. Countermeasures Against Root Fault Simulation

To protect against the case that the malicious nodes do not
announce any logical coordinates to their benign neighbors,
our embedding procedure can be combined with a self-
stabilizing leader election procedure, like the one proposed
by Datta et al. [7]. These algorithms ensure that during the
election, every node learns its distance to the leader node.
Thus, the attacker can either remain passive, leading to a
benign node being elected or participate in the election,
thereby allowing nodes to discover paths to its nodes and thus
obtain logical coordinates.

V. EVALUATION

We implemented a simulation model using the discrete event
simulator OMNet++ [26] to evaluate the effectiveness of our

TABLE I: Number of nodes n, average degree deg, maximum
degree degmax, degree variance σdeg , diameter D and average
shortest path length spl of the graph datasets used for the
simulation study.

Graph n deg degmax σdeg D spl

Brightkite (BK) 56, 739 7.5 1134 424.3 18 4.92

Facebook (FB) 63,392 25.8 2196 6420.5 15 4.32

SPI 9,222 10.58 294 513.7 12 4.67

Barabási-Albert (BA) 9,222 9.99 317 129.8 6 3.72

Erdös-Renyi (ER) 9,222 10.57 27 10.4 7 4.12

countermeasures under adversarial behavior as well as the
impact of duplicate node identifiers.

A. Metrics and Datasets
For each of our simulation experiments, we repeatedly

selected a random pair of nodes u and v and let u initiate
the routing of a packet with v’s current coordinate as target.
To evaluate the effectiveness of our countermeasures, we
measured the routing success ratio, defined by the number
of packets that have been delivered correctly divided by the
total number of created packets. Furthermore, we measured the
number of parent changes, which is the sum of the number
of times each node in the network changed its parent in the
spanning tree for the complete simulation run.

We used various real-world and synthetic datasets to as-
sess the impact of network structure on the efficacy of our
countermeasures. Since anonymous publishing overlays are
explicitly designed to hide the network structure to outsiders
as well as overlay participants, there are currently no network
snapshots available for simulation studies. Given that the
overlays considered in our work are determined by social trust
relationships, we instead relied on graphs obtained by crawling
online social networks.

Table I summarizes the graph datasets used for our study.
All graphs are undirected, as we consider overlays with
bidirectional connections. Brightkite (BK) stands for a graph
acquired from the Brightkite location-based online social
network [4]. Facebook (FB) denotes the largest connected
component of a graph obtained by crawling a fraction of the
Facebook social network [27]. Furthermore, SPI represents
graph data from the online social network of a German
university [17]. In each of these graphs, a node represents
a user and an edge corresponds to a friendship between the
respective users.

All of the considered real-world graphs have a strong
variance regarding node degrees. To measure the effect of
the degree sequence of the network on our routing scheme,
we used igraph [12] to create two synthetic networks with
the same number of nodes and roughly the same number
of edges as the SPI graph. The first synthetic network was
generated using the Barabasi-Albert (BA) model [1] with
linear preferential attachment, such that its degree sequence
follows a power law. The second graph was generated by
connecting randomly chosen node pairs, commonly referred
to as the Erdös-Renyi (ER) model [2]. Due to the uniform

selection of node pairs, this graph has normal distributed
degrees.

B. Model and System Parameters

For comparison, we implemented the embedding procedure
described in Section IV-A as well as a variant of the state-
of-the-art embedding by Roos et al. [20]. Concretely, this
embedding variant differs from our embedding as follows:

1) The tree distance metric presented in Section III-B is
used for routing.

2) No maximum coordinate length is enforced.
3) Instead of always appending the node’s identifier to the

logical coordinate of its parent, a new random number
is generated and appended each time a node changes its
parent.

Our variant of the embedding by Roos et al. disregards privacy
protections and backtracking as they are irrelevant for our
evaluation. Note that these changes do not affect the routes
taken, they merely enable a comparison based on the key
differences: the embedding and the distance function. While
the embedding by Roos et al. supports routing via multiple
trees in parallel, we only considered the case with one tree, as
the construction of multiple trees is orthogonal to our defenses.
In order to clearly distinguish this variant, we will refer to it
as routing based on tree distance.

For each of the aforementioned embeddings, we furthermore
implemented adversarial behavior. We concentrated on the
case that all malicious nodes are colluding and thus modeled
them as a single adversarial node.

Note that we do not focus on the decline in routing success
as the number of attack edges increases. Rather, the evaluation
quantifies how much an attacker with few edges can keep
nodes from communicating by simulating churn. We thus
simulated an attacker with only two attack edges but vary
how the adversary uses these edges to disrupt routing. A key
parameter of interest was the victim distance d, defined as
the overlay hops between the benign endpoints of two attack
edges in the benign part of the network.

Adversarial nodes always drop all messages they are sup-
posed to forward on behalf of benign nodes. In addition,
we implemented the adversarial behavior that, given network
diameter bound D, the adversary announces a coordinate of
length 3 to one of the two benign nodes he is connected to and
a coordinate of length D to the other. Every ∆tchurn simulated
seconds, the adversary announces new coordinates while also
interchanging the length of the announced coordinates.

To evaluate the impact of an attacker with the alternating
coordinate length behavior described above, we performed
simulations on the SPI, BA and ER graphs for all combinations
of the victim distance d ∈ {1, 3, 6} and simulated churn
interval ∆tchurn ∈ {4.0, 2.0, 1.0}. For the SPI graph, we
furthermore performed simulations for d = 9. For comparison,
we also obtained results for the case that the adversary does
not interfere with the construction of the embedding and only
drops incoming packets. In all of the above experiments, we
used 63 bits for the length of the identifiers. Due to a lack of

time available for the study, we only obtained results for the
graphs with 9,222 nodes in the scenarios with an attacker.

To evaluate the impact of duplicated node identifiers on the
success ratio of routing in the absence of attacks, we further-
more performed simulations on all of the previously described
graphs with a varying number of bits b ∈ {32, 24, 16} used
for node identifiers.

C. Set-up

In the absence of attacks, our simulation proceeded as
follows:

1) For a given graph G = (V,E) as input, create a
network with |V | nodes and for each edge in E, add a
corresponding connection to the network. Furthermore,
assign every node a randomly chosen b-bit identifier.

2) Select a root node and let this node begin the construc-
tion of the embedding.

3) As soon as at least two nodes have a logical coordinate,
start choosing random node pairs u, v out of those nodes
that already have a coordinate and initiate a transfer from
u to the coordinate of v.

4) After 100.000 messages have been delivered or dropped,
end the simulation and output the success ratio.

In the scenarios with an attack, we replaced step 2. The
simulation first added the adversarial and then connections
to two randomly chosen node pairs with the given distance
d. Afterwards, the adversary node was set as root. In the
scenarios without attack, a randomly chosen benign node was
set as leader.

The time between consecutive initiations of transfers is
drawn from an exponential distribution with mean value 0.005,
which ensures that in the event of an attack, a significant
number of packets is affected by changes of the spanning
tree due to malicious actions. The simulated delay for the
transmission of messages, including those for maintaining
the embedding, is 50 milliseconds, as previous studies on
latency in the Internet indicate round-trip times around 100
milliseconds [6].

D. Robustness against simulated churn

Since greedy routing based on tree distance is very sensitive
to coordinate changes near the root node, we expect the routing
success ratio to decrease mainly due to constant prefix changes
resulting from simulated churn. In contrast, our algorithm
remains mainly unaffected by changes close to the root unless
the only path to the destination is via the root node. However,
if the structure of the spanning tree changes drastically, routing
should be impacted as parent-child relations might be reversed,
which can lead to routing in the wrong direction. For our
protocol, we thus expect a higher success ratio in the presence
of simulated churn, where the gain in success ratio over routing
based on tree distance decreases as the distance d between the
endpoints of the attack edges increases.

Figure 5 shows the mean routing success ratio for the
simulation runs on the SPI, ER and BA graph. There are no

results for victim distance d = 9 on the BA and ER graph, as
these graphs have a diameter below 9.

When greedy routing based on tree distance was used,
routing success decreased drastically on all graphs as the
time between consecutive coordinate changes by the adversary
decreased. In the case that the benign nodes connected to the
adversary were neighbors, the mean routing success ratio on
the SPI graph decreased from 1 for the case without churn to
0.6 when the coordinates announced by the adversary changed
every second. On the BA graph, the mean routing success
ratio decreased to 0.68 and for ER, it decreased to 0.58. As
expected, the decrease in routing success ratio was similar for
all considered victim distance values on each graph. Note that
the success ratio without churn is clearly below 1 for d > 1,
indicating that messages are sent via the root. The larger the
distance of the two nodes that the adversary connects to are,
the more likely it is that the adversary is seen as the best
choice for reaching a different part of the network.

With our embedding and routing algorithm, the mean suc-
cess ratio remained 1 in all runs with victim distance 1 for
the SPI graph as well as for the BA and ER graph. In the
following, we explain the reason for the consistently high
success ratio and also why routing based on tree distance fails
even for d = 1.

For d = 1, the two neighbors a and z of the attacker
are themselves neighbors. Hence, if the attacker pretends to
have a coordinate when communicating with a that is at least
2 elements longer than the one he pretends to have when
communicating with z, a selects z as a parent and vice versa.
As a consequence, the message is never routed via the root
and hence never dropped.

When the role of a and z in the parent-child relation
switch, routing based on tree distance fails as the common
prefix length to each old coordinate is 0. If we use the
embedding based on overlapping coordinates, the routing is
still successful.

In order to see that, first observe that due to the reuse of the
persistent identifiers, the target coordinate Ct of every message
must either contain a’s or z’s identifier. Furthermore, Ct still
encodes a path in the graph due to the persistent identifiers
making up the coordinates, even if the path is not part of
the spanning tree for the current embedding. Hence, once the
packet reaches a node on that path, it can be routed to t. More
specifically, if a node u 6= t has an identifier corresponding to
the i-th element of Ct, u is a neighbor of the node v whose
identifier is the i+1-th element of Ct. v is perceived as closer
to t and hence u routes the packet to v. The process continues
until t is reached. When a node forwarding the packet does
not have an identifier included in Ct or a neighbor for whom
that is the case, it forwards the packet towards the root. If
no node on the path to t is reached beforehand, the packet
must eventually traverse a or z, as these are the only nodes
connected to the malicious root. If a receives the message and
Ct contains a’s identifier, then a forwards the packet such
that it eventually reaches t, as argued above for any node u
whose identifier is contained in Ct. If Ct does not contain a’s

0.5

0.6

0.7

0.8

0.9

1.0

Time between simulated churn events

R
ou

tin
g

su
cc

es
s

ra
tio

No churn 4s 2s 1s

SPI

TD,d=1
TD,d=3
TD,d=6
TD,d=9

O,d=1
O,d=3
O,d=6
O,d=9

0.5

0.6

0.7

0.8

0.9

1.0

Time between simulated churn events

R
ou

tin
g

su
cc

es
s

ra
tio

No churn 4s 2s 1s

Barabasi-Albert

TD,d=1
TD,d=3
TD,d=6

O,d=1
O,d=3
O,d=6

0.5

0.6

0.7

0.8

0.9

1.0

Time between simulated churn events

R
ou

tin
g

su
cc

es
s

ra
tio

No churn 4s 2s 1s

Erdös-Renyi

TD,d=1
TD,d=3
TD,d=6

O,d=1
O,d=3
O,d=6

Fig. 5: Every point shows the mean routing success ratio over 50 randomly chosen node pairs with distance d, given that
routing based on tree distance (TD) or routing based on overlap (O) was used. 99% confidence intervals were omitted due to
their small size.

identifier, it must contain z’s identifier. Thus, z has a lower
distance value to Ct than a. a forwards to z and the packet
is then routed to t as explained above. The behavior for the
case that z receives the message first is analogous.

In all of the investigated settings, our routing algorithm
yielded considerable improvements in the presence of adver-
sarial bahavior. We attribute the stronger improvement for the
BA graph to two topological properties: First, due to the lower
average shortest path length, packets need to traverse fewer
hops. As every hop incurs a delay of 50ms, a lower number
of hops leads to a lower timespan in which the transmission
may be affected by a simulated churn event. Second, because
of the heterogeneous degree distribution, the nodes in subtrees
rooted at high degree nodes are less likely to change their
parent, as the high-degree node is decisive for their distance
to the root node.

To substantiate the above claims, Figure 6 shows the mean
number of parent changes per second for the different scenar-
ios. For readability, we omit the results for the routing based
on tree distance, as they do not differ significantly from the
values for routing based on overlap. In the scenario that the
benign nodes connected to the adversary were 3 hops apart,
the mean number of parent changes per second on the SPI
graph increased from 0 to 3560 when churn was simulated
every second. With the same victim distance on the BA graph,
the mean number of parent changes per second increased to
4172 when churn was simulated seconds. Conducting the same
simulation on the ER graph led to a mean number of parent
changes 7181, when coordinates were changed every second.
When the benign nodes connected to the adversary were 6
hops apart, the mean number of parent changes per second on
the SPI graph increased to 4494 when churn was simulated
every second. On the BA graph, the mean number of parent
changes per second increased to 5106 and on the ER graph,
the mean number of parent changes per second increased to
7392 when churn was simulated every second.

Because the degree sequence of the SPI graph also follows
a power law, the increase in the number of parent changes per
second is even slightly lower than for the BA graph. Thus, it
appears more likely that the stronger decrease in routing suc-

cess ratio on the SPI graph stems from its significantly higher
average shortest path length. In contrast, the average shortest
path length of the ER graph is closer to the value of the BA
graph, but the mean number of parent changes increases much
stronger. Consequently, we consider the stronger decrease in
routing success ratio compared to the BA graph to stem mostly
from the stronger dynamics of the underlying spanning tree.

E. Impact of coordinate length

Since nodes in our setting generate their identifiers ran-
domly, it is possible that two or more nodes obtain the same
identifier. Duplicated node identifiers cause routing to fail in
our embedding, as messages will be routed towards the wrong
nodes. For our simulations of the scenarios without an attacker,
we thus expect the routing success ratio to decrease as the
number of bits used for the identifier decreases and when the
number of nodes in the network increases.

Figure 7 summarizes the routing success ratio for the
scenarios without an attack but a varying number of bits for
node identifiers. In all scenarios where 24 bits or more were
used for node identifiers, the decrease in routing success is
negligible besides the presence of duplicated identifiers.

Routing failures occurred whenever a message with target
coordinate Ct = (c1, .., cn) reached a node u that coinciden-
tally chose the same identifier V IDu as one of the nodes
on the path encoded in Ct. If V IDu = cn, then u erro-
neously considers itself the target of the message. Otherwise,
if V IDu = ck for 1 ≤ k < n, then u is unlikely to have a
connection to a node with identifier ck+1.

We attribute the low decrease in routing success ratio in
our simulations to the low average shortest path length, as the
spanning tree thus has a low depth and nodes therefore obtain
short logical coordinates. Furthermore, due to the low network
density, most nodes have a low degree.

In particular, observe that if a node u at level l has k
neighbors and all nodes have unique identifiers, then the total
number |NV ID(u)| of distinct virtual identifiers in u’s neigh-
borhood (including itself) can be at most l+ (k− 1) · (l+1),
as nodes choose neighbors with minimal distance to the root
node. If identifiers are not unique, the number of distinct vir-

0

2000

4000

6000

8000

Time between simulated churn events

N
o.

pa
re

nt
ch

an
ge

s
pe

r
se

co
nd

No churn 4s 2s 1s

SPI

d=1
d=3
d=6
d=9

0

2000

4000

6000

8000

Time between simulated churn events

N
o.

pa
re

nt
ch

an
ge

s
pe

r
se

co
nd

No churn 4s 2s 1s

Barabasi-Albert

d=1
d=3
d=6

0

2000

4000

6000

8000

Time between simulated churn events

N
o.

pa
re

nt
ch

an
ge

s
pe

r
se

co
nd

No churn 4s 2s 1s

Erdös-Renyi

d=1
d=3
d=6

Fig. 6: Every point shows the mean number of parent changes per second over 50 randomly chosen node pairs with hop distance
d for the scenario that routing based on overlap was used. The bars around each point denote 99% confidence intervals.

0.92

0.94

0.96

0.98

1.00

Dataset

R
ou

tin
g

su
cc

es
s

ra
tio

SPI BK FB BA ER

32 bits
24 bits
16 bits

Fig. 7: Each point denotes the mean routing success ratio over
100 runs for the given graph and number b of identifier bits.
The bars above and below each point denote 99%-confidence
intervals.

tual identifiers may be slightly higher as in the aforementioned
term, because a node u in our embedding may not choose the
neighbor v with the lowest distance to the root as parent if a
node with the same identifier as u already occurs on the path
from v to the root node.

Since nodes generally have a low degree and short coor-
dinates, the set of distinct virtual identifiers NV ID(u) that is
compared to the packet’s target coordinate (which also only
contains few elements) at every node u on the path is very
small compared to the set of all identifiers in the network.
In the graphs with high-degree nodes (BA, Facebook and
Brightkite), the nodes with high degrees were always very
close to the root node and thus had short logical coordinates.
Furthermore, due to their low distance, most nodes that were
neighbors of high-degree nodes chose them as parent, thus
only adding one identifier to the set of identifiers in the
neighborhood of the high-degree nodes.

When 16 bits were used for the node identifiers, the mean
routing success ratio on the real-world graphs decreased no-
tably as the number of nodes increases. It turns out that in
these settings, it happened that multiple nodes generated the
same identifier as the root node. In our model, all nodes with
the identifier of the leader act as root node and thus start the
construction of a rooted spanning tree. The decrease in routing
success then resulted from the fact that nodes in different trees

0 20 40 60 80 100

0.5

1.0

2.0

5.0

Run index

va
lu

e

Success ratio
No. of nodes

Fig. 8: Number of nodes with the identifier of the leader node
and the corresponding routing success ratio for each run on
the Facebook graph. The results are ordered according to the
number of nodes with the leader’s identifier.

are unable to reach one another.
As an example, Figure 8 shows the routing success ratio

together with the number of nodes with the leader’s identifier
on the different runs on the Facebook graph. Please note the
logarithmic scale of the plot. In all runs where only one node
had the identifier of the leader, the routing success ratio was
very close to 1.0, whereas in the runs with multiple root nodes,
routing success dropped by up to 0.34.

The ER graph was more strongly affected by the low num-
ber of identifier bits than the SPI and BA graph. We attribute
this result to the fact that due to the mostly similar node
degrees, the different spanning trees resulting from duplicated
leader identifiers have roughly the same size, thus separating
almost equally large numbers of nodes from one another.

F. Summary of Results

We evaluated the routing success of our embedding algo-
rithm in the presence of a malicious root node as well as in
the absence of attacks. Our results show that our embedding
has an up to 31.6% higher probability of successful routing
in the presence of actively malicious nodes than existing
embedding algorithms. Furthermore, our results indicate that
the routing success ratio is mostly unaffected by the presence
of duplicated identifiers, given the network is sparse and has
a low diameter and as long as the identifier of the root node
remains unique.

VI. PRIVACY CONSIDERATIONS

One of the key goals of the embedding in [20] is privacy.
In particular, the authors provide receiver anonymity through
the use of keyed hashes and change coordinates frequently
to prevent tracing and inferences of relationships. In the
following, we discuss to what extent we can achieve the same
privacy guarantees.

a) Recipient privacy: In the original scheme for anony-
mous return addresses, the receiver computed an obfuscated
coordinate using a random key and a preimage-resistant hash
function. For each element, the hash function derives a cor-
responding element for the anonymous address by hashing
the element together with an input derived from the key and
hashes of preceding elements. In our scheme, the routing
should still work even if previous coordinates change, which
is impossible if the input to the hash function depends on the
remaining elements of the coordinate. Hence, we adapt the
computation of anonymous coordinates as follows. Given a
logical coordinate C = (c1, c2, .., cn) and a random key k̃, we
compute the return address y = (d1, .., dn) with dj = h(k̃⊕cj)
for all 1 ≤ j ≤ n. If h is a preimage-resistant hash function,
the attacker can infer the original element only with negligible
probability.

In addition, anonymous return addresses use padding to hide
the length of their coordinates. In this manner, a node cannot
be sure if a message is for a neighbor or a descendant of
the neighbor. If the adversary only proposes coordinates with
maximum length, nodes cannot pad their coordinates in our
algorithm without further measures. To mitigate this issue,
nodes may choose a random number k, remove the first k
elements of their coordinate and add k random numbers as
padding. However, such an action might further decrease the
routing success ratio.

b) Traceability: The persistent addressing introduced in
Section IV allows long-term traceability of nodes based on
identifiers. In other embeddings, nodes change their coordinate
frequently, making it intuitively harder to trace their activities.
Furthermore, overlays such as Freenet [5] aim to hide the
topology of the graph as they correspond to personal trust
relationships. When using an identifier with multiple parent
nodes, each such parent-child relation reveals a link that over
time might enable the attacker to reconstruct the underlying
social graph. Knowing the social graph can enable the attacker
to infer the otherwise hidden real-world identity of another
user [16], which is generally undesired.

However, even the original algorithm reveals relationships,
though likely to a lesser degree. Future work is needed to
quantify the information leakage to determine whether addi-
tional protections are required. In situations such as payment
channel networks that do not consider topology information
sensitive, our algorithm is certainly an adequate solution.

VII. CONCLUSION

We proposed and evaluated an alternative embedding and
routing protocol for connectivity-restricted overlays. With our

new protocol, we considerably improve the resilience to at-
tacks by focusing on the overlap of coordinates rather than
the common prefix. In that manner, we mitigate severe but
realistic attacks from a malicious root node.

While the current algorithm is appropriate for networks like
Bitcoin’s Lightning network that publish topology information,
it remains unclear if the additional information leakage is
acceptable for networks that explicitly aim to hide such
information. For such networks, future work regarding the
privacy implications of our design is necessary.

REFERENCES

[1] Albert-László Barabási and Réka Albert, Emergence of scaling in
random networks, Science (1999), 509–512.

[2] Béla Bollobás, Random graphs, Cambridge university press, 2001.
[3] M. Byrenheid, S. Roos, and T. Strufe, Attack-resistant spanning tree

construction in route-restricted overlay networks, SRDS, 2019.
[4] Eunjoon Cho et al., Friendship and mobility: user movement in location-

based social networks, Knowledge discovery and data mining, 2011.
[5] Ian Clarke et al., Private communication through a network of trusted

connections: The dark freenet, 2010.
[6] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris, Vivaldi:

A decentralized network coordinate system, ACM CCR 34 (2004).
[7] Ajoy K Datta, Lawrence L Larmore, and Hema Piniganti, Self-stabilizing

leader election in dynamic networks, SSS, 2010.
[8] Julien Herzen, Cedric Westphal, and Patrick Thiran, Scalable routing

easy as pie: A practical isometric embedding protocol, International
Conference on Network Protocols, IEEE, 2011.

[9] Andreas Höfer, Stefanie Roos, and Thorsten Strufe, Greedy embedding,
routing and content addressing for darknets, NetSys, 2013.

[10] Rein Houthooft et al., Fault-tolerant greedy forest routing for complex
networks, Reliable Networks Design and Modeling, 2014.

[11] , Robust geometric forest routing with tunable load balancing,
INFOCOM, 2015.

[12] igraph core team, igraph - The network analysis package,
https://igraph.org/, May 2020.

[13] Robert Kleinberg, Geographic routing using hyperbolic space, INFO-
COM, IEEE, 2007, pp. 1902–1909.

[14] Jernej Kos et al., U-sphere: Strengthening scalable flat-name routing for
decentralized networks, ComNets (2015).

[15] Alan Mislove et al., Measurement and analysis of online social networks,
IMC, 2007.

[16] Arvind Narayanan and Vitaly Shmatikov, De-anonymizing social net-
works, Symposium on Security and Privacy, IEEE, 2009, pp. 173–187.

[17] Thomas Paul et al., The students portal of ilmenau: A holistic osns user
behaviour model, Tech. report, Palestine Polytechnic University, 2016.

[18] Joseph Poon and Thaddeus Dryja, The bitcoin lightning network:
scalable off-chain instant payments, 2016.

[19] S. Ramasubramanian, H. Krishnamoorthy, and M. Krunz, Disjoint
multipath routing using colored trees, ComNets (2007).

[20] Stefanie Roos, Martin Beck, and Thorsten Strufe, Anonymous addresses
for efficient and resilient routing in f2f overlays, INFOCOM, 2016.

[21] Stefanie Roos et al., Settling payments fast and private: Efficient
decentralized routing for path-based transactions, NDSS, 2018.

[22] Sahel Sahhaf et al., Single failure resiliency in greedy routing, Design
of Reliable Communication Networks, 2013.

[23] Sahel Sahhaf et al., Experimental validation of resilient tree-based
greedy geometric routing, Computer Networks 82 (2015), 156–171.

[24] Ankit Singla et al., Scalable Routing on Flat Names, CoNEXT, 2010.
[25] Yanbin Sun et al., Secure data sharing framework via hierarchical

greedy embedding in darknets, MONET (2019).
[26] Andras Varga, OMNeT++ Discrete Event Simulator,

https://omnetpp.org/, November 2018.
[27] Bimal Viswanath et al., On the evolution of user interaction in facebook,

Workshop on Online social networks, 2009.

