Appeared in: Computers & Security 21/5 (2002) 461-471

The Open Source Approach

— Opportunities and Limitations
with Respect to Security and Privacy —"

Marit Hansen', Kristian Kéhntopp?, Andreas Pfitzmann®
February 14, 2002

Abstract

Today’s software often does not even fulfil basic security or privacy requirements.
Some people regard the open source paradigm as the solution to this problem. First,
we carefully explain the security and privacy aspects of open source, which in
particular offer the possibility for a dramatic increase in trustworthiness for and
autonomy of the user. We show which expectations for an improvement of the
software trustworthiness dilemma are realistic. Finally, we describe measures
necessary for developing secure and trustworthy open source systems.

Keywords: Open Source, Software Development, Security, Privacy, Trustworthiness

1 What is Open Source?

Open source software means:

» The source code is distributed along with the executable program.

* ltis free to use.

* ltincludes a license allowing anyone to modify and redistribute the software.

1.1 Representation of Programs

Contrary to open source software, most commercial software does not allow others
than the developers to view the source code. Instead only compiled object code is
distributed. The source code is the structured and modularised representation of the
software’s functionality written in a programming language targeted for understanding
and changeability by humans. From the source code, the object code is compiled by
specific software, so-called compilers. The object code is machine-oriented and
therefore very hard to read and understand by humans.

Example:

This simple program written in the high-level language C outputs the string “Hello
world!”, as might be obvious to at least every student of computer science:

PThis paper has been presented at ISSE 2001, September 26-28, London. This version is slightly revised after
the conference.

! Marit Hansen, Independent Centre for Privacy Protection, Kiel, Germany,
marit.hansen@datenschutzzentrum.de.

% Kristian Kéhntopp, Developer in the Open Source Project PHP, Kiel, Germany, kris@koehntopp.de.

% Andreas Pfitzmann, Dresden University of Technology, Germany, pfitza@inf.tu-dresden.de.



main() {
printf("Hello world\n");

}

Before a computer can execute the program, it has to be analysed and compiled to
object code by a C compiler. The following object code of the above program makes
use of memory addresses and direct machine commands.

0 55 push %ebp

1 89 e5 mov %esp,%ebp

3: 83ec08 sub $0x8,%esp

6: 83c4fa add SOxfffffff4,%esp
9 68 00 00 00 00 push $0x0

e: e8 fc ff ff ff call Oxf

13: 83c¢410 add $0x10,%esp
16: 89ec mov %ebp,%esp
18: b&d pop %ebp

19: c3 ret

The numeric expressions in the first two columns (here in hex code instead of the
longer binary code) are represented by assembler expressions in the last two
columns to make them more understandable to humans, while the computer only
needs the information contained in the first two columns. But also other forms of
representation may be used, e.g. intermediate stages during a compilation.

In contrast to the source code, the object code (at least when of a certain size) is
generally ill-suited for comprehension, bugfixing, and hard to modify by humans.
Though “de-compilers” can generate some source code from given object code,
these de-compiled versions normally are not the same as the original code and in
general barely understandable, either. E.g. de-compilers cannot provide annotations
as in the original source code or variable names hinting to the underlying semantics.

1.2 Properties of Different Software Models

Today’s software models mainly differ in two aspects:
* degree of openness and
» requirements of the licensing model.




-3

The degree of openness varies in different software models, black box, closed box,
and open box:

Degree of openness | Input and output behaviour observable Open object code Open source code
Black box X
Closed box X X
Open box X X X

While the functionality of the inner system is unknown in a black box, where only the
input and output behaviour can be observed, a closed box system additionally
provides the object code, and an open box system additionally provides both object
and source code. Open box does not necessarily mean an openness of code for
everybody, but it is a property of openness relative to specific parties or persons.

Often the term closed source is used for closed box models. In closed box models,
the source code of programs as well as detailed strategies of the programs’ design
are treated as business secrets and are not made public to reserve any further
development for the company’s own programmers.

Also tools such as compilers, operating systems, or hardware used in the
development of software are subject to the criteria for disclosure: Are the tools used
for the generation of program code known? Are they provided with the software? If
so, only as object code, or as source code? Recursively, the same questions may be
applied to the tools used in the production of these tools.

The main differences in licensing models are shown in the following table:

License Free of cost Distribution Use without Source code Source code
without restrictions open to may be modified
restrictions everybody by anybody
Commercial
Shareware X
Freeware X X X
Shared source (x)
Open source X X X X X

“‘Commercial” here indicates the type of software most prevalent now, where the
buyer only acquires a personal license to use it. Other license models also permit a
free distribution or an unrestricted use.* Microsoft's shared source concept opens the
source code for customers and partners, but does not allow any change or
distribution.> Open source also allows the user to edit the source code, to change it,
and to distribute the changed code.

* Details are described by Bruno Perens: The Open Source Definition, in: Open Sources: Voices from the Open
Source Revolution, O’'Reilly, January 1999; http://www.oreilly.com/catalog/opensources/book/perens.html.
° http://www.microsoft.com/business/licensing/sharedsource.asp.




1.3 Open Source Definition

According to the Open Source Definition (OSD)®, open source does not just mean
access to the source code. The distribution terms of open source software must
comply with the following criteria:

Open Source Definition (http://www.opensource.org/osd.html)

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a component of an
aggregate software distribution containing programs from several different sources. The license shall
not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as well as
compiled form. Where some form of a product is not distributed with source code, there must be a
well-publicized means of obtaining the source code for no more than a reasonable reproduction
cost—preferably, downloading via the Internet without charge. The source code must be the preferred
form in which a programmer would modify the program. Deliberately obfuscated source code is not
allowed. Intermediate forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be distributed under
the same terms as the license of the original software.

4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license allows
the distribution of "patch files" with the source code for the purpose of modifying the program at build
time. The license must explicitly permit distribution of software built from modified source code. The
license may require derived works to carry a different name or version number from the original
software.

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of endeavor.
For example, it may not restrict the program from being used in a business, or from being used for
genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed without the
need for execution of an additional license by those parties.

6 http://www.opensource.org/osd.html; the Open Source Definition (OSD) was developed from the guidelines for
Debian GNU/Linux software.




8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program’s being part of a particular
software distribution. If the program is extracted from that distribution and used or distributed within the
terms of the program's license, all parties to whom the program is redistributed should have the same
rights as those that are granted in conjunction with the original software distribution.

9. License Must Not Contaminate Other Software

The license must not place restrictions on other software that is distributed along with the licensed
software. For example, the license must not insist that all other programs distributed on the same
medium must be open-source software.

For software complying with these criteria, the Open Source Initiative (OSI)
introduced the seal “OSI Certified”. As open source in a broader sense are counted
license models differing for instance in to what extent changes made on an open
source program have to comply to the same license as the original program, or to
what extent restrictions on the license to use the program are allowed.

2 IT System Development

2.1 The Cycle of Software Development

The typical cycle of software development consists of three repeating phases:
design, review, and bugfixing. After the =—r—

system design and implementation, its L Review
behaviour is analysed and tested in a Applications _,

review process. Bugs and weaknesses | 4 (Re-)L&Bug-
found are eliminated by applying fixes. In Design ~ fixing
many cases not only small errors have to Review

be cured, but system design must be . — - Components —=
improved in general. The first phase, re- A (Re-) Bug-
design, is repeated when further Design fixing
requirements occur, restarting the Review

The process of design includes a Design ~ fixing
development from the idea to a written
statement in form of a concept or
guideline up to a realization in the form of
hardware or software.

process. y Tools, . N
e.g., co?pllers (Re- )L‘)_Bf,g_

Review

Design fixing

w Review

/N N
OperatingAsystem (Re-)L ‘)Bug.
-

The process of review consists of a —
system’s analysis, in order to determine
whether it operates as desired. In a black
box test, first the system’s behaviour in various tests is observed from outside. In a
white box test also further information on the system is included, especially the
source code. Thus, experts are given a deeper insight, and the formalised methods
to check the system’s integrity can be applied. For instance, tests can be thus
constructed, that every single execution path in the code (i.e. all multi-choice
branches and loops) is being checked. Besides, it is possible to check single

.
Hardware ¢ &Bug_

Design fixing




modules for the defined pre- and postconditions by means of formal methods.
Nowadays, this is at least possible for smaller chunks of code.

An apt modularisation combined with a respective interface specification is
prerequisite for a revisable system design still manageable in its complexity.
Generally, not even in white box tests the whole behaviour of the system can be
evaluated. In a software review, merely the program’s representation in the source
code is being considered. Particularly, these inspections are only seldom applied to
tools used in the process of design incl. of hardware, operating system, and
compilers.

A review usually results in change requests that are realised as patches on short
notice (bugfixing) or as part of a system re-design with a longer perspective. Patches
can generally only be provided by those capable of reading and editing the source
code. The change requests are passed back into the design process so they can be
considered in newer versions. Thus, the feedback leads cyclic system development.
The iteration frequency depends on various factors. The disclosure of the system
usually shortens this cycle, for patches and feedback in this case can be performed
more directly, i.e. particularly the time between review and bugfixing is reduced.

2.2 Software Development in Open Source Projects

The open source software development process in most successful projects is not
anarchic, but well organised: Generally a small core team is responsible for quality
control [Warf98], and each member has to prove his/her competence by delivering
good code before gaining influence in the software development. The software
development process of the open source model bears some resemblance to the
academic research model, which is based on similar premises (e.g., reputation is
being built by showing published results) and processes (e.g., peer review of
published results). Technical means support the distributed co-operation, e.g.
Concurrent Versioning Systems or mailing lists and data bases for bug reports.

In the context of open source projects, there are potentially many programmers
working on new versions of the code that are constantly published on the Internet, to
give feedback, fix bugs, or add new features [RaymO00]. Simultaneous work on the
code is supported by version-management tools. In certain intervals consolidated
versions are released for public usage. The users may obtain the current version
from the Internet or from distributors who often provide additional service.

In most cases new fellow developers do not accidentally join an existing project, but
often have been using the software themselves more or less successfully for some
time. Often minor bugs or deficiencies are the reason for a user to take a look at the
source code and performing fixes which in turn will become part of the official source
tree — if only for the reason that these fixes will not have to be manually applied for
each new version.



Therefore, all well organized projects have a central repository, where the source
codes and all changes are stored in form of a version history. The repository usually
is maintained with the Concurrent Versioning System (CVS), also an open source
project. The policies regulating access to the CVS may differ, but in many cases the
CVS can be read by anyone, so that the current version developed as well as all
older versions, including information on the changes made in each line, are available
for any interested user of the Internet. An example:

Vers (User Date): Line

1.495 (shane 30-Jan-99): PHPAPI void php3_puts(const char *s)
1.207 (zeev 29-Nov-97): {

1.232 (shane 05-Dec-97): TLS_VARS;

1.397 (zeev 29-Mar-98):

1.495 (shane 30-Jan-99): #if APACHE

1.232 (shane 05-Dec-97): if (GLOBAL(php3_rgst)) {

Displayed for each line are the file’s version number where the line last was changed,
the developer’'s name who brought in the line, and the date of change. The CVS
never overwrites information. It is always possible to list every single change made
between two different versions, to reconstruct versions of an older date, or to undo
changes.

Changes in the repository are sent via a mailing list, to which all developers have
subscribed. Generally, a comment is included that illustrates the purpose of the
change. In this manner developers are kept informed of changes made on program
modules, and have the possibility to discuss these changes on this mailing list or —
depending on the volume of traffic — another separate list. Also changes made to the
source code and possible further development directions are being discussed.

While it is comparatively easy to get read access to a project’'s CVS repositories, one
generally only gets write access after having proven to be competent. One way of
doing this is to send feedback in the form of patches to the list or a developer with
write access to CVS. This patch is either accepted or rejected — in the latter case the
decision is usually well-grounded. Having provided some useful patches and thus
proven to the project managers sufficient involvement and interest into the project not
to cause any accidental damage, a developer will be given a distinguished CVS
account (a login granting an access to write to the repository). In future the developer
will thus be able to commit patches directly.

The CVS repository, the mailing lists, and the web site providing downloads are tools
that represent the key elements of an infrastructure able to support a community of
developers. Additional services such as a database for the tracking of bug reports, or
web panels to analyse CVS changes or source codes, are quite useful but less
widespread. Some service providers as for instance sourceforge.net are providing
these services for interested developers who do not want to run their own servers.




3 Open Source related to Security, Privacy, and Trustworthiness
When dealing with technical systems one may differentiate between:

» security and privacy, which principally can be objectively stated, and

» trustworthiness, which strongly depends on the subjective experience and
feelings of the user.

For a wide use of IT systems in information societies there should not only be a
feeling of security from the users’ side, but also an actual security claim that is made
subject to validation. Both is true not only for security, but also for privacy. Open
source with its qualities has the capacity influence both factors, feelings and
validation.

For an extensive security investigation it is necessary to analyse the whole system,
including the application software, its source code, and also the tools used for the
development of the object code. These tools are compilers, operating systems,
hardware, and the whole development environment. The canonical example for a
successful attack on the development environment is [Thom84]: a Trojan built into
development tools without any traces of it in the actual source code of the
application.

3.1 How Can Open Source Support Security?

By means of disclosure, in principle anyone is able to check an open source program
for its specified functionality, or whether it contains any Trojans. In this way, open
source enhances a software’s transparency. By performing a code review, security
risks can be detected, bugs can be fixed, and patches can be made available to the
public via the Internet, so that the process of development is expedited. A quick
response time while bugfixing — often the patch is provided at the same time as the
bug is reported — contributes to a greater amount of trust from the users side. In
many open source projects bug databases are run, where users can send bug
reports. As soon as the problem is fixed, they will be informed immediately.

The disclosure of the source code and the criteria for its design have for a long time
been considered a necessary condition for security investigations of cryptographic
algorithms.” The fact that the concept of “security by obscurity” is very unreliable and
questionable, is even today shown by various examples, where the nondisclosure of
the source code could not be ensured or security-relevant bugs have been found by
accident, by aimed attacks on the executable program, or by reverse-engineering
[Schn99].

" Kerckhoff's Principle: The strength of a crypto-system should reside entirely in the difficulty in determining the
key, not in the secrecy of the algorithm.



3.2 Open Source with Respect to Privacy

The trustworthiness enhanced by disclosure of the source code particularly affects
privacy. While other qualities such as integrity or availability can be formulated as
do’s (requirements concerning actions; the software is supposed to do something)
and be validated to some degree by practical experience, privacy requirements are
very often don’ts (requirements concerning no-actions; the software is supposed not
to do something or not to expose some information). The most prominent security
goal of privacy is confidentiality, which is clearly a don’t (expose information). Such
requirements as well as formal proof of don’ts can only be validated by disclosure of
sources.

Transparency is not only the core of open source — it is a necessary prerequisite for
privacy. To be more precise: Transparency is a prerequisite for the right to
informational self-determination, i.e. everyone has the right to know who is knowing
what about him at what time. People can only exert control over the accuracy of their
data or the use of it if they know when which data is being collected, who will have
access to it and how it will be used. Privacy Acts like the European Data Protection
Directive 95/46/EC and international data protection principles like the Fair
Information Practices® address transparency of all data processing including the
capture, collection, dissemination, and use of personal information. E.g. Article 12 EU
Directive describes the right of each individual to obtain from the responsible party
‘communication to him in an intelligible form of the data undergoing processing and
of any available information as to their source” and “knowledge of the logic involved
in any automatic processing of data concerning him at least in the case of the
automated decisions ...” Open source does not automatically fulfil the requirement of
intelligible information, but it is a suitable basis for the responsible party to
understand the data processing themselves in all its details.

3.3 The Status Quo of Open Source Supporting Security and Privacy

As a result of the co-operation of many interested software developers, there already
exists a wide range of robust, reliable open source programs today. The concept of
open source permits a customisation to personal demands if necessary, or a further
development. Apart from the fact that the authors’ names usually are known and they
are within reach, for this reason the user is also less dependent on a single producer.
Support, maintenance, and extensions can equally be provided by other parties.® In
fact there are various companies providing hotlines and services as consultation and
development for open source products. For some users the concept of open source
furthermore represents an invitation to participate in the development and quality
assurance of software, after first having made their contribution to review or bugfixing
processes.

® Fair Information Practices, collected by the Center for Democracy and Privacy:
http://www.cdt.org/privacy/guide/basic/fips.html.

® See Alan Cox: The Risk of Closed Source Computing, osOpinion: Tech Opinion commentary for the people, by
the people, October 1999; http://www.osopinion.com/Opinions/AlanCox/AlanCox1.html.



-10 -

The following table shows the possible benefits of open source properties for security
and privacy, particularly by enhancing trustworthiness for and autonomy of the user
[KOKPOO0]. Restrictions and limitations are illustrated as well as solutions or measures
to cope with these restrictions. Thus, taking into account the listed protection
measures, open source can actually improve security and especially trustworthiness.

The latter is particularly important with regard to privacy.

Possible Profit for Security
& Privacy: Trustworthiness

Open Source
Property

Restrictions and
Limitations

Solutions and Protection
Measures

source code review possible
for any independent expert

openness of source
code

no guarantee that
independent experts have
actually fully reviewed the
code and that the code is
understandable

establishing methods for
review and evaluation;
compliance to general
principles of software
development

no reliance on “security by
obscurity” [Schn99]

openness of source
code

only works with “mature”
security and privacy
technologies like
cryptography

avoidance of dubious and
“immature” security
technologies like, e.g.,
watermarking

no Trojans

openness of source
code

only insofar as the entire
system (including the
generation of object code) is
open and has been
evaluated [Thom84]

review and evaluation of
the entire system;

open source for all tools
used as well

quick elimination of bugs by
distributing fixes;

tailoring to meet personal
demands

openness of source
code;

possibility for change
and (re)distribution

possibility that new bugs are
inadvertently built in and that
internal attackers implement
Trojans into their system

test before installation of
fixes;

encapsulation of the
production version and of
fixes in order to prevent
unauthorised modification
(e.g., by digital signatures
and certificates)

user can participate in
development and quality
control

openness of source
code;

possibility for change
and (re)distribution

only practicable for persons
with programming
knowledge

IT education campaigns

no dependence on a single
manufacturer

openness of source
code;

possibility for change
and (re)distribution

no contractual relationship,
no liability and no guarantee
of the developers

maintenance and
distribution contracts

quality control through
personal motivation of
developers;

openness of source
code;
free of cost;

orientation only towards
personal interests of
developers, e.g. often de-

distributors with orientation
towards customers (e.g.,
user interfaces, support,

reputation instead of market | distribution emphasis of soft aspects maintenance, hotlines)
pressure (usability) compared to hard

aspects (algorithm choice)
big fund of reliable/well- distribution

established code which can
be re-used in new projects

Many of the restrictions and limitations do not only apply to open source software
development, but are universal requirements for any software development.
However, some properties of open source like the openness and the established
tradition of using digital signatures for preventing unnoticed manipulation of
distributed code, definitely form an appropriate prerequisite for improving both
security and trustworthiness.



-11-
3.4 Open Source = More Security?

The open source concept alone is no panacea for security aspects [NeumO0O]. The
disclosure of the source code is only as useful as it is actually being analysed by
experts who make their results public. Presently, it is widely left to chance to what
extent a source code is being evaluated by the Internet community and how fast the
bugs are being fixed."

Thus, open source itself does not guarantee good quality and security. Moreover, the
openness of the source code, and the fact that large numbers of users may look for
and fix security holes can also lull people into a false sense of security [Vieg00].

Some software is called “open source” when subsequently disclosing the source
code for everybody, e.g., Netscape’s browser or StarOffice. In many cases, this
software consists of megabytes of monolithic code. Even if the corresponding
documentation and design principles are published, it is not very probable that other
programmers will review the code or join the project. Therefore, all security
considerations due to the “many-eyeballs effect” do not apply here unless
professional evaluation is done [Whee01]. Because of lacking a defined review
process, some open source software has contained security- or privacy-relevant
bugs for many years, e.g., SSH (Secure Shell)"" or PGP (Pretty Good Privacy)'?.

The code will not automatically improve by being published, also. Improvements are
driven by the developers personal motivation in building a reputation, or if commercial
software is being freed from usual marketing constraints, including that the products
have to be delivered within the agreed time even before they are released by the
developers. In any case, just as with any other good software development, strict
standards have to be set for quality assurance, e.g. when aspects as a clear design,
the modularization, the documentation, and a release only after an adequate period
of testing are concerned.™

Besides, comfortable user interfaces play an important role in application software,
especially if the users are expected to be essentially responsible for their own
security and privacy. Here the open source concept is confronting diverse needs,
because the developers’ interests are more centered on providing functionality and
not ease-of-use, which is usually considered boring and non-challenging work.
Therefore, distributors and support companies have taken on the task to realise
further customer-oriented developments.

' Germano Caronni who found a long unknown bug in the open source crypto-program PGP 5.0, stresses:
“Public code review is a good thing — if it happens.” (Key Generation Security Flaw in PGP 5.0, bugtraq mailing
list, May 22. 2000, message ID: <20000523141323.A28431@olymp.org>).

" See http://www.securityfocus.com/bid/2347 (=CAN-2001-0144 at http://cve.mitre.org/).

"2 See CERT Advisories CA-2000-09 (=CVE-2000-0445) and CA-2000-18 (=CVE-2000-0678).

" This applies to commercial software all the same. John Pescatore, a Gartner Analyst, criticizes Microsoft's
Internet Information Server (11S): “Gartner remains concerned that viruses and worms will continue to attack IIS
until Microsoft has released a completely rewritten release of ISS that is thoroughly and publicly tested. Sufficient
operational testing should follow to ensure that the initial wave of security vulnerabilities every software product
experiences has been uncovered and fixed.” (Gartner Note “Nimda Worm Shows You Can't Always Patch Fast
Enough”, Note Number: FT-14-5524, September 19, 2001,
http://www3.gartner.com/resources/101000/101034/101034.pdf).



-12.-

If the possibility of change is given to the user in form of patches provided for him or
modifications of his own, this may — by chance or launched by attackers — result in
problems critical to his security. For internal attackers it is easier to build Trojans into
the disclosed code before compilation. Here security measures such as an
encapsulation of the product version against unauthorized changes by means of
certificates that make use of digital signatures could be taken to mend these
problems. In the same way it is possible to check the authenticity of provided code
and patches.

A general limitation is represented by the fact that during a security investigation all
systems have to be thoroughly evaluated as a whole. After all, beneath a number of
applications, there are also software development tools and operating systems
available as open source products. Also the concept of open hardware is being
propagated. But of course, it is not easy to come to terms with the complexity of
systems that are being developed and used today.

Open source does not free the users from their own responsibility for the processing
of data. The license regulations often explicitly exclude cases of warranty and liability.
In any case — no matter if open or closed source — it is the users who have to provide
for the security of their own systems. The continuous detection of new security
breaches and attacks nowadays demands a system administration that is constantly
dealing with this topic, and a regular maintenance of the systems. Instant reactions
are made possible by supporting alert-services.

3.5 Open Source Security & Privacy Tools

As trustworthiness plays a particularly important role for security & privacy tools,
especially they are increasingly provided as open source applications,. They actually
profit from the fact that many eyes can see more than just two, i.e. that independent
programmers are participating in the process of review, reporting possible security
breaches, and fixing bugs. As these persons make use of the Internet to spread their
contributions, the supplied files incl. the source codes are provided with a digital
signature by the author or a trusted third party as evidence of their integrity and
authenticity. The user always should check the digital signature for its validity before
compiling and installing the files.

Meanwhile, an increasing number of open source projects concentrate on security
and privacy, e.g., the category “Security” of the open source platform
http://sourceforge.net contains more than 500 projects, others are hosted by
http://www.devshed.com or http://www.linuxsecurity.com/. Even security-oriented
operating systems are being developed, e.g., Security-enhanced Linux by the NSA
(http://www.nsa.gov/selinux/) and TrustedBSD (http://www.trustedbsd.org/). The open
source approach is a powerful way of distributing privacy enhancing technologies
(PET) as well. “Open Privacy” can be seen as a new way for not only distributing
PET, but also striking against the principle “security by obscurity”. Additionally,
transparency is a major privacy requirement for all kinds of technology and law, not
only because of the Data Protection Acts (e.g., the European Data Protection



-13-

Directive Art. 12), but also because of the right to know™, which is described in
Freedom of Information Acts all over the world.

4 Conclusion

Open source is no panacea for security problems [NeumO00], but can give a big boost
to trustworthiness. As has been proved in many open source projects, an open and
co-operative software development can lead to robust and reliable products.
Nevertheless, this is no automatism, but requires adequate diligence during the entire
development process and during the evaluation by experts. Security is a tough topic
— the people developing and reviewing the code have to know how to write secure
programs [Whee01]. The Government can help by running IT education campaigns.

It is both a national interest and the interest of each user or service provider to use
trustworthy IT systems.’® Without control over the IT systems, nobody can take
responsibility for data processing in his or her IT system. In the context of a growing
need for PKI and other trusted third parties, the fact that these parties could not
sincerely provide for security of their IT systems, is terrifying. The same accounts for
all e-commerce or e-government applications. Remedy can be achieved by building
provably trustworthy hardware and software systems. No single state can finance this
development alone. The only chance is to use existing open source systems,
enhance them, and provide a defined way of evaluation, review, and distribution of
patches. As a matter of fact, open source makes it possible for competing nations
with diverging national interests to work together and build a system that can be
trustworthy to all of them, whereas it would be unacceptable to use closed source
software from the respective other party.

5 References

[K6KPO0] Koéhntopp, Kristian/Kéhntopp, Marit/Pfitzmann, Andreas: Sicherheit durch Open Source?
Chancen und Grenzen, in: DuD 24/9 (2000), Vieweg, Wiesbaden 2000, pp. 508-513;
http://www.koehntopp.de/marit/pub/opensource/

[Neum00] Neumann, Peter G.: Robust Nonproprietary Software, IEEE Symposium on Security and
Privacy, Oakland CA May 15-17, 2000; http://www.csl.sri.com/neumann/ieee00+.pdf

[Raym00] Raymond, Eric S.: The Cathedral and the Bazaar, Version 1.51, August 2000;
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

[Schn99] Schneier, Bruce: Crypto-Gram September 15, 1999; http://www.counterpane.com/crypto-
gram-9909.html#OpenSourceandSecurity

" Also called “right to access".

'S From the European Parliament Resolution on ECHELON, Minutes of September 5, 2001: “Measures to
encourage self-protection by citizens and firms

[...]129. Urges the Commission and Member States to devise appropriate measures to promote, develop and
manufacture European encryption technology and software and above all to support projects aimed at developing
user-friendly open-source encryption software;

30. Calls on the Commission and Member States to promote software projects whose source text is made public
(open-source software), as this is the only way of guaranteeing that no backdoors are built into programmes;

31. Calls on the Commission to lay down a standard for the level of security of e-mail software packages, placing
those packages whose source code has not been made public in the "least reliable" category [...]”
(http://www2.europarl.eu.int/omk/OM-Europarl?PROG=REPORT&L=EN&PUBREF=-//EP//TEXT+REPORT+A5-
2001-0264+0+NOT+SGML+VO//EN, mirrored at http://cryptome.org/echelon-090501.htm#Minutes).



[Thom84]
[Vieg00]

[Warfa8]

[Whee01]

14 -

Thompson, Ken: Reflections on Trusting Trust, Turing Award Lecture, Communications of
the ACM, Vol. 27, No. 8, August 1984, pp. 761-763; http://www.acm.org/classics/sep95/
Viega, John: The Myth of Open Source Security, May 26, 2000;
http://webdeveloper.earthweb.com/websecu/article/0,,12013_621851,00.html

Warfield, Michael H.: Musings on Open Source Security Models — Does Open Source
Mean Open Season for Crackers?, 1998; http://www.linuxworld.com/linuxworld/lw-1998-
11/lw-11-ramparts.html

Wheeler, David A.: Secure Programming for Linux and Unix HOWTO — Chapter 2.3: Is
Open Source Good for Security?, 1999-2001, http://www.linuxdoc.org/HOWTO/Secure-
Programs-HOWTO/open-source-security.html



-15.-

Contact address of the corresponding author:

Marit Hansen

Independent Centre for Privacy Protection Schleswig-Holstein
Unabhangiges Landeszentrum flr Datenschutz Schleswig-Holstein
HolstenstralRe 98

D-24103 Kiel

Germany

Phone: +49 431 988 1214

Fax: +49 431 988 1223

E-Mail: marit.hansen@datenschutzzentrum.de

Biographies

Kristian Kohntopp, computer scientist, is a senior security consultant. For more
information see his homepage: http://www.koehntopp.de/kris/.

Marit Hansen, computer scientist, is head of the “Privacy Enhancing Technologies
(PET)” Section at the Independent Centre for Privacy Protection Schleswig-Holstein
(the state privacy commission), Germany. Since her diploma in 1995 she has been
working on security and privacy aspects especially concerning the Internet,
anonymity, pseudonymity, identity management, biometrics, multilateral security, and
e-privacy from both the technical and the legal perspectives. In several projects she
and her team actively participate in technology design in order to support PET and
give feedback to the legislation. They co-operate with various project partners,
especially Dresden University of Technology and many Privacy Commissioners, e.g.,
via the Virtual Privacy Office (http://www.privacyservice.org/). She chairs the Working
Group on Dependable IT Systems of the German Society for Computer Science (Gl)
(http://lwww.gi-ev.de/) and is member of W3C’s P3P (Platform for Privacy
Preferences) Working Groups.

Andreas Pfitzmann is a professor of computer science at Dresden University of
Technology. His research interests include privacy and multilateral security, mainly in
communication networks, mobile computing, and distributed applications. He has
authored or coauthored about 70 papers in these fields. He received diploma and
doctoral degrees in computer science from the University of Karlsruhe. He is a
member of ACM, IEEE, and GI, where he served as chairman of the Special Interest
Group on Dependable IT-Systems for ten years.



