An Introduction to Digital Identity #### Andreas Pfitzmann Dresden University of Technology, Department of Computer Science, D-01062 Dresden Nöthnitzer Str. 46, Room 3071 Phone: +49 351 463-38277, e-mail: pfitza@inf.tu-dresden.de, http://dud.inf.tu-dresden.de/ Keynote presentation at OECD Workshop on Digital Identity Management Trondheim, Norway, May 8, 2007 ## An Introduction to Digital Identity Digital identity of what? is set of attributes Partial Identities (pIDs) for privacy how to use? Attributes: Important kinds of Possible classifications Example: How to (not) use biometrics How to represent identity online? How to manage your identity online? Identity management framework needed #### Digital identity of what? ### Digital identity of Natural person, Legal person, or Computer #### Digital identity is ? Digital identity is much more than Names (easy to remember), Identifiers (unique), and Means of authentication (secure). #### Digital identity is ... ### Digital identity primarily is a set of attributes, where some might change over time and some may be certified by third parties. Given that it is very hard – if not impossible – to erase widely used digital data, a digital identity is • only growing – never shrinking. This is true both for a global observer as well as for each party (or set of parties pooling their information) interacting with a digital identity. #### Partial Identities (pIDs) Achieving security and privacy requires users to subset their digital identity in so-called ### Partial Identities (pIDs), where each pID might have its own name, own identifier, and own means of authentication. #### Using plDs requires ... - Basic understanding by users (and by government and businesses), - At least one personal computer administrating personal data and executing cryptographic protocols fully controlled by the user (otherwise no way to validate privacy properties, i.e. unlinkable pIDs), - Digital pseudonyms for secure authentication (otherwise no way to achieve accountability), - Anonymous credentials to transfer certified attributes from one pID to another pID of the same digital identity (otherwise no transfer of certified attributes between pIDs, which drastically reduces their applicability). #### Important kinds of attributes - Names (easy to remember), - Identifiers (unique), - Means of authentication (secure) - Digital pseudonyms are unique identifiers suited to test authentication (e.g. public keys of PGP) - Biometrics (binding to natural person) - Addresses (useful for communication) - Bank account (payment) - Credit card number (payment and creditworthiness) #### Possible classifications of attributes - Authenticated by third parties or not? - If authenticated by third parties, third parties trusted by whom wrt what? - Easy to change or not? - Varying over time or not? - Given attributes vs. chosen attributes - Pure attributes vs. attributes containing side information - Characterizing a single entity per se or an entity only in its relationship to other entities? #### How much protection for which attributes? Some attributes need much *more protection* than others, e.g. those which - are not easy to change, - do not vary over time, - are given attributes, or - contain side information. These attributes are part of the core-identity. Advancements and use of technology may shift some attributes from core-identity to non-core identity, e.g. the address of your house or flat is core, the current address of your laptop maybe not. #### An eternal core-identity attribute: Biometrics - Biometrics is an important example of an eternal coreidentity attribute - "How to (not) use biometrics" therefore is an interesting case study http://dud.inf.tu-dresden.de/literatur/Duesseldorf2005.10.27Biometrics.pdf - Main result: Biometrics between data subject and his/her devices only - Authentication by possession and/or knowledge and biometrics - No devaluation of classic forensic techniques (e.g. by foreign devices reading fingerprints, digital copies will make it into databases of foreign secret services and organized crime, enabling them to leave dedicated false fingerprints at the scenes of crime) - No privacy problems caused by biometrics (measurements may contain medical or psychological side information) - But: Safety problem remains unchanged - ⇒ Provide possibility to switch off biometrics after successful biometric authentication. #### How to represent identity online? - Only partial identities otherwise Big Brother (or Little Sisters) will be quite happy - (Digital) Pseudonyms as identifiers for partial identities - How to establish and use (digital) pseudonyms - Initial linking between the pseudonym and its holder - Linkability due to the use of the pseudonym in different contexts #### Pseudonyms: Initial linking to holder #### Public pseudonym: The linking between pseudonym and its holder may be publicly known from the very beginning. Phone number with its owner listed in public directories #### **Initially non-public pseudonym:** The linking between pseudonym and its holder may be known by certain parties (trustees for identity), but is not public at least initially. Bank account with bank as trustee for identity, Credit card number ... #### **Initially unlinked pseudonym:** The linking between pseudonym and its holder is – at least initially – not known to anybody (except the holder). Biometric characteristics; DNA (as long as no registers) #### Pseudonyms: Use in different contexts => partial order A → B stands for "B enables stronger anonymity than A" #### Trustee for values vs. Trustee for identities Accountability of digital pseudonyms (by depositing money to cover claims against damage caused under that pseudonym) VS. - Accountability of holders of digital pseudonyms (by identifying holders in case of uncovered damage) - Cf. Holger Bürk, Andreas Pfitzmann: Value Exchange Systems Enabling Security and Unobservability; Computers & Security 9/8 (1990) 715-721. http://dud.inf.tu-dresden.de/sireneLit.shtml#pay.fair #### How to manage your identity online? - Get attentive to managing your identity, i.e. your pIDs (otherwise others will manage you) - Consider both, reputation and privacy, make a compromise - Get the right tools - Privacy-enhancing identity management tools, cf. FP6 EU-Project PRIME https://prime-project.eu/ - Communication infrastructure, which does not define permanent identifiers attached to you (your network address) making privacy-enhancing identity management at the application layer void - Choose the right communication partners (including: avoid those which are unnecessarily privacy-invasive) #### Identity management framework needed - Now, we have an identity management patchwork. - As security is only as good as the weakest link of the chain, privacy is at most as good as the most privacy-invasive "layer" you are using. - Therefore, an identity management patchwork will not lead to secure and privacy-enhancing identity management. - An identity management framework is needed addressing both, security and privacy. #### **Further reading** http://dud.inf.tu-dresden.de/Anon_Terminology.shtml The following backup slides are taken from: http://www.inf.tu-dresden.de/index.php?node_id=510&ln=en ## Authenticated anonymous declarations between business partners that can be de-anonymized # Authenticated anonymous declarations between business partners that can be de-anonymized # Security for completely anonymous business partners using active trustee who can check the goods # Security for completely anonymous business partners using active trustee who can not check the goods ## Security for completely anonymous business partners using active trustee who can (not) check the goods #### **Personal identifier** #### Role-relationship and transaction pseudonyms #### **Encryption in layer models** In the OSI model it holds: Layer *n* doesn't have to look at Data Units (DUs) of layer *n*+1 to perform its service. So layer *n*+1 can deliver (*n*+1)-DUs encrypted to layer *n*. For packet-oriented services, the layer n typically furnishes the (n+1)-DUs with a n-header and possibly with an n-trailer, too, and delivers this as n-DU to layer n-1. This can also be done encrypted again. and so on. All encryptions are independent with respect to both the encryption systems and the keys. ### **Arranging it into the OSI layers (1)** ### **Arranging it into the OSI layers (2)** | OSI layers | broadcast | | query | MIX-network | DC-network | RING-
network | |---|----------------|----------------------|---------------------|-----------------------|--------------------------------|-----------------------------| | 7 application | | | | | | | | 6 presentation | | | | | | | | 5 session | | | | | | | | 4 transport | implicit | | implicit | | | | | | addressing | | addressing | | | | | 3 network | broad-
cast | | query and superpose | buffer and re-encrypt | | | | | | | | | | | | 2 data link | | | | | anonymous
access | anonymous
access | | 1 physical | | channel
selection | | | superpose keys
and messages | digital signal regeneration | | | | | | | | | | 0 medium | | | | | | ring | | has to preserve anonymity against the communication partner end-to-end encryption | | | | | | | has to preserve anonymity against the communication partner end-to-end encryption has to preserve anonymity realizable without consideration of anonymity