
1

Important Terms

computers interconnected by communication network
= computer network (of the first type)

computers providing switching in communication network
= computer network (of the second type)

distributed system
spatial
control and implementation structure

open system ≠ public system ≠ open source system

service integrated system

digital system

2

Threats and corresponding protection goals

threats:

1) unauthorized access to information

2) unauthorized modification of information

3) unauthorized withholding of
information or resources

protection goals:

confidentiality

integrity

availability

example: medical information system

computer company receives medical files

undetected change of medication

detected failure of system
for authorized
users

≥ total
correctness

≅ partial correctness

no classification, but pragmatically useful
example: unauthorized modification of a program

1) cannot be detected, but can be prevented; cannot be reversed
2)+3) cannot be prevented, but can be detected; can be reversed

3

Threats and corresponding protection goals

threats:

1) unauthorized access to information

2) unauthorized modification of information

3) unauthorized withholding of
information or resources

protection goals:

confidentiality

integrity

availability

example: medical information system

computer company receives medical files

undetected change of medication

detected failure of system
for authorized
users

≥ total
correctness

≅ partial correctness

no classification, but pragmatically useful
example: unauthorized modification of a program

1) cannot be detected, but can be prevented; cannot be reversed
2)+3) cannot be prevented, but can be detected; can be reversed

4

Definitions of the protection goals

confidentiality

Only authorized users get the information.

integrity

Information are correct, complete, and current
or this is detectably not the case.

availability

Information and resources are accessible where and
when the authorized user needs them.

- subsume: data, programs, hardware structure

- it has to be clear, who is authorized to do what in which situation

- it can only refer to the inside of a system

5

Protection against whom ?

Laws and forces of nature
- components are growing old
- excess voltage (lightning, EMP)
- voltage loss
- flooding (storm tide, break of water pipe, heavy rain)
- change of temperature ...

Human beings
- outsider
- user of the system
- operator of the system
- service and maintenance
- producer of the system
- designer of the system
- producer of the tools to design and produce
- designer of the tools to design and produce
- producer of the tools to design and produce
the tools to design and produce

- designer ...

fault
tolerance

Trojan horse
• universal
• transitive

includes user,
operator,
service and maintenance ... of the system used

6
Considered maximal strength of the attacker

attacker model
It‘s not possible to protect against an omnipotent attacker.

– roles of the attacker (outsider, user, operator, service and
maintenance, producer, designer …), also combined

– area of physical control of the attacker
– behavior of the attacker

• passive / active
• observing / modifying (with regard to the agreed rules)

– stupid / intelligent
• computing capacity:

– not restricted: computationally unrestricted
– restricted: computationally restricted

time

money

7

Observing vs. modifying attacker

area of physical control
of the attacker

area of physical control
of the attacker

IT-system
under consideration

IT-system
under consideration

world world

observing attacker modifying attacker

acting according to
the agreed rules

possibly breaking
the agreed rules

8
Strength of the attacker (model)

Attacker (model) A is stronger than attacker (model) B,
iff A is stronger than B in at least one respect
and not weaker in any other respect.

Stronger means:
– set of roles of A ⊃ set of roles of B,
– area of physical control of A ⊃ area of physical control of B,
– behavior of the attacker

• active is stronger than passive
• modifying is stronger than observing

– intelligent is stronger than stupid
• computing capacity: not restricted is stronger than restricted

– more money means stronger
– more time means stronger

Defines partial order of attacker (models).

Realistic protection goals/attacker models:
Technical solution possible?

9

10

Security in computer networks
confidentiality

• message content is confidential
• sender / recipient anonymous

integrity
• detect forgery
• recipient can prove transmission
• sender can prove transmission
• ensure payment for service

availability
• enable communication

• time

• place

end-to-end encryption
mechanisms to protect traffic data

authentication system(s)
sign messages
receipt
during service by digital payment
systems

diverse networks;
fair sharing of resources

11

Multilateral security

Security with minimal assumptions about others

• Each party has its particular protection goals.

• Each party can formulate its protection goals.

• Security conflicts are recognized and
compromises negotiated.

• Each party can enforce its protection goals
within the agreed compromise.

12

Multilateral security (2nd version)

Security with minimal assumptions about others

• Each party has its particular goals.

• Each party can formulate its protection goals.

• Security conflicts are recognized and
compromises negotiated.

• Each party can enforce its protection goals
within the agreed compromise.

13

Multilateral security (3rd version)

Security with minimal assumptions about others

• Each party has its particular goals.

• Each party can formulate its protection goals.

• Security conflicts are recognized and
compromises negotiated.

• Each party can enforce its protection goals within
the agreed compromise. As far as limitations of this
cannot be avoided, they equally apply to all parties.

14

Protection Goals: Sorting

Content Circumstances

Confidentiality
Hiding

Integrity

Anonymity
Unobservability

Accountability

Prevent the
unintended

Achieve the
intended

Availability Reachability
Legal Enforceability

15

Protection Goals: Definitions
Confidentiality ensures that nobody apart from the communicants can discover the content of the
communication.

Hiding ensures the confidentiality of the transfer of confidential user data. This means that nobody
apart from the communicants can discover the existence of confidential communication.

Anonymity ensures that a user can use a resource or service without disclosing his/her identity.
Not even the communicants can discover the identity of each other.

Unobservability ensures that a user can use a resource or service without others being able to
observe that the resource or service is being used. Parties not involved in the communication can
observe neither the sending nor the receiving of messages.

Unlinkability ensures that an attacker cannot sufficiently distinguish whether two or more items of
interest (subjects, messages, actions, …) are related or not.

Integrity ensures that modifications of communicated content (including the sender’s name, if one
is provided) are detected by the recipient(s).

Accountability ensures that sender and recipients of information cannot successfully deny having
sent or received the information. This means that communication takes place in a provable way.

Availability ensures that communicated messages are available when the user wants to use them.

Reachability ensures that a peer entity (user, machine, etc.) either can or cannot be contacted
depending on user interests.

Legal enforceability ensures that a user can be held liable to fulfill his/her legal responsibilities
within a reasonable period of time.

16
Additional Data Protection Goals: Definitions

(Rost/Pfitzmann 2009)

Transparency ensures that that the data collection and data processing operations can be
planned, reproduced, checked and evaluated with reasonable efforts.

Intervenability ensures that the user is able to exercise his or her entitled rights within a
reasonable period of time.

17

Correlations between protection goals

Confidentiality

Hiding

Integrity

Anonymity

Unobservability

Accountability

Availability
Reachability

Legal Enforceability

weakens–

–

implies strengthens+

+

+

18

Correlations between protection goals

Confidentiality

Hiding

Integrity

Anonymity

Unobservability

Accountability

Availability
Reachability

Legal Enforceability

weakens–

–

implies strengthens+

+

+

Transitive closure to be added

19

Physical security assumptions

Each technical security measure needs a physical “anchoring”
in a part of the system which the attacker has neither read
access nor modifying access to.

Range from “computer centre X” to “smart card Y”

What can be expected at best ?
Availability of a locally concentrated part of the system cannot
be provided against realistic attackers

→ physically distributed system
… hope the attacker cannot be at many places at the same time.

Distribution makes confidentiality and integrity more difficult.
But physical measures concerning confidentiality and integrity
are more efficient: Protection against all realistic attackers
seems feasible. If so, physical distribution is quite ok.

20

Key exchange using symmetric encryption systems

key exchange centers
X

kAZ(k3) kBZ(k3)

+ k3

Z

participant A participant B

kAX(k1) kBX(k1)

key k = k1

k(messages)

NSA:
Key Escrow
Key RecoveryY

kAY(k2) kBY(k2)

+ k2

21

Key exchange using symmetric encryption systems

A’s key exchange centers

Y

kAZ(kU3)

kAB3

Z

participant A participant B

kAX(kU1)

kBU(kAB1)

key k = kAB1 + kAB2 + kAB3

k(messages)

X

kAY(kU2)

B’s key exchange centers

V W

U

kU1
kU2

kU3

kAV kAW

kBV(kAB2)
kBW(kAB3)kAB2

kAU= kU1 + kU2 + kU3

kAU (kAB1)

Needham-Schroeder-Protocol using Symmetric encryption

• from 1978

• goals:
– key freshness:

• key is „fresh“, i.e. a newly generated one
– key authentication:

• key is only known to Alice and Bob (and maybe some trusted third
party)

• preconditions:
– a trusted third party T
– shared term secret keys between Alice (resp. Bob) and the trusted

third party:
• kAT, kBT

22

② kAT(NA, B, kAB, kBT(kAB, A))

Needham-Schroeder-Protocol using Symmetric encryption
23

key exchange center

participant A participant B
kAB(messages)

T

① A, B, NA

③ kBT(kAB, A)
④ kAB(NB)

⑤ kAB(NB-1)

• Problem:
– no key freshness /

authentication for
B, if old kAB was
compromised

– attack:
• replay ③
• decrypt ④
• modify ⑤

24

Asymmetric encryption system

key
generation

encryption decryptionc(x)
ciphertext

encryption key,
publicly known

c

d

random
number

plaintextplaintext
x x

=d(c(x))

secret area

random
number '

decryption key,
kept secret

Opaque box with spring lock; 1 key

Domain of trust

Domain of trust

Area of attack

more detailed
notation

r

gen

(c,d):=gen(r)

decenc S
S:=enc(c,x,r ') x:=dec(d,S)=dec(d,enc(c,x,r '))

r '

Needham-Schroeder-Protocol using Asymmetric encryption

• from 1978

• goals:
– key freshness:

• key is „fresh“, i.e. a newly generated one
– key authentication:

• key is only known to Alice and Bob

• preconditions:
– public encryption keys of Alice cA and Bob cB known to each other

25

① cB(NA, A)

Needham-Schroeder-Protocol using Asymmetric encryption
26

participant A participant B

kAB(messages)

② cA(NA, NB)

• Problem:
– B does not know if he really talks to A

③ cB(NB)
kAB=KDF(NA, NB)

① cM(NA, A)

Attack on asymmetric Needham-Schroeder-Protocol
[Loewe 1996!]

27

participant A participant B
kAB(messages)

④ cA(NA, NB)
⑤ cM(NB)

kAB=KDF(NA, NB)

participant M

② cB(NA, A)
③ cA(NA, NB)

⑥ cB(NB)

kAB(messages)

• Solution:
– B has to include his identity in his message ④

① cM(NA, A)

Attack on asymmetric Needham-Schroeder-Protocol
28

participant A participant B

④ cA(NA, NB, B)

participant M

② cB(NA, A)
③ cA(NA, NB, B)

• Note:
– encryption has to be non-mallable

c=112=310

One-Time-Pad mod 4
29

participant A participant B

• Problem:
– invert last bit of plain-text

c=m+k mod 4

possible
Keys

Plain-text manipulated
Plain-text

manipulated
Cipher-text

0 3=112 102=2 2=102

1 2=102 112=3 0=002

2 1=012 002=0 2=102

3 0=002 012=1 0=002

m=c-k mod 4

• Problem: k=3, c=2 m=3=112

30

Cipher Block Chaining (CBC)
All lines transmit as many characters as a block comprises

Addition mod appropriately chosen modulus
Subtraction mod appropriately chosen modulus

encryption decryption

key key

plaintext
block n

ciphertext
block n

memory for
ciphertext block

n-1

memory for
ciphertext block

n-1

plaintext
block n

n+1 n+1n+1

n+1

bit error

n nn

n

n+2n+2n+2

If error on the line:
Resynchronization
after 2 blocks,
but block borders
have to be
recognizable

• •

self synchronizing

31

Cipher Block Chaining (CBC) (2)
All lines transmit as many characters as a block comprises

Addition mod appropriately chosen modulus
Subtraction mod appropriately chosen modulus

encryption decryption

key key

plaintext
block n

ciphertext
block n

memory for
ciphertext block

n-1

memory for
ciphertext block

n-1

plaintext
block n

n+1 n+1n+1

n+1

• •

useable for authentication ⇒ use last block as MAC

n+2n+2n+2

n+2

bit error

n nn

n

1 modified
plaintext bit
⇒ from there on
completely
different ciphertext

32

CBC for authentication

encryption encryption

key key

plaintext

ciphertext
block n

memory for
ciphertext block

n-1

memory for
ciphertext block

n-1

plaintext
block n

•

••

last
block

•

compa-
rison

ciphertext
block n

last
block

ok ?

Why CBC IV should be random?
33

DB
(executes

Encryption/
Decryption)

DB
Encrypted
Storage

𝑐𝑐 = 𝑘𝑘(IV𝐴𝐴⨁𝑚𝑚)

IV = IV𝑀𝑀⨁IV𝐴𝐴

Malory

Alice
𝑐𝑐𝑀𝑀 = 𝑘𝑘(IV𝑀𝑀⨁𝑚𝑚𝑀𝑀)

𝑐𝑐𝑀𝑀 = 𝑘𝑘(IV𝑀𝑀⨁IV⨁YES)
𝑐𝑐𝑀𝑀 = 𝑘𝑘(IV𝑀𝑀⨁IV𝑀𝑀⨁IV𝐴𝐴⨁YES)
𝑐𝑐𝑀𝑀 = 𝑘𝑘(IV𝐴𝐴⨁YES)

𝒄𝒄𝑴𝑴 = 𝒄𝒄?

CBC for Confidentiality & Integrity
34

CBC-Encryption &
MAC-Generation

(last block)

plaintext

ciphertext,
MAC

CBC-Decryption

plaintext

CBC-MAC-
Generation

MAC (last block) compa-
rison

ok ?

•

Whole Disk Encryption – Requirements

• The data on the disk should remain confidential
• Manipulations on the data should be detectable
• Data retrieval and storage should both be fast operations,

no matter where on the disk the data is stored.
• The encryption method should not waste disk space (i.e.,

the amount of storage used for encrypted data should not
be significantly larger than the size of plaintext)

• Attacker model:
– they can read the raw contents of the disk at any time
– they can request the disk to encrypt and store arbitrary files of their

choosing
– and they can modify unused sectors on the disk and then request

their decryption

35

Watermarking Attack on Whole Disk Encryption

• Goal: Detect stored files
• Assumptions regarding Attacker:

– they can read the raw contents of the disk at any time
– they can request the disk to encrypt and store arbitrary files of their

choosing
• Assumptions regarding Encryption & Storage:

– CBC (IV, k, m) CBC (sector number, k, m)
– Remember first block CBC: Enc(k, m[0] ⊕ IV)
– (parts of) larger files a stored at consecutive sectors

• SNx, SNx+1, SNx+2,…,SNx+y

• where will be an x where the t least significant bits are all 0 and y≥2t

– t=3 SNx: zzzzzz000, …, SNx+7: zzzzzz111

• Attack:
– Create plaintext such that the first plaintext-blocks

stored in each sector differ only in the LSB

36

Watermarking Attack on Whole Disk Encryption
37

zzz000

Sector Number
(IV)

zzz001

zzz010

zzz011

zzz100

zzz101

Plaintext blocks stored in the sectors

bbbbA2 … …… …

bbbbĀ2 … …… …

bbbbA2 … …… …

bbbbĀ2 … …… …

bbbbA2 … …… …

bbbbĀ2 … …… …

Watermarking Attack on Whole Disk Encryption
38

zzz000

Sector Number
(IV)

zzz001

zzz010

zzz011

zzz100

zzz101

First Plaintext block
stored in the sectors

bbbbA2

bbbbĀ2

bbbbA2

bbbbĀ2

bbbbA2

bbbbĀ2

First ciphertext block
stored in the sectors

Enc(bbbbA2⊕zzz000)=Enc(p1)=c1

Enc(bbbbĀ2⊕zzz001)=Enc(p1)=c1

Enc(bbbbA2⊕zzz010)=Enc(p2)=c2

Enc(bbbbĀ2⊕zzz011)=Enc(p2)=c2

Enc(bbbbA2⊕zzz100)=Enc(p3)=c3

Enc(bbbbĀ2⊕zzz101)=Enc(p3)=c3

Watermarking Attack on Whole Disk Encryption
39

zzz000

Sector Number
(IV)

zzz001

zzz010

zzz011

zzz100

zzz101

First Plaintext block
stored in the sectors

bbbbA2

bbbbĀ2

bbbbA2

bbbbĀ2

bbbbA2

bbbbĀ2

First ciphertext block
stored in the sectors

c1

c1

c2

c2

c3

c3

Watermark!

Watermarking Attack on Whole Disk Encryption

• Solution: unpredictable IVs

• Construction:
– Encrypted salt-sector initialization vector (ESSIV)
– IV(SN) = Enc (Hash(k), SN)

40

Probability Exercise
41

Bob

Eve
Message m
P(“Yes”)=0.7
P(“No”) =0.3

Key k
P(0)=0.4
P(1)=0.6

c=k⊕m

P(“Yes” | c=1)=?

k=0 k=1

m=„Yes“

m=„No“

Alice

Probability Exercise
42

∑P=1.0

Bob

Eve
Message m
P(“Yes”)=0.7
P(“No”) =0.3

Key k
P(0)=0.4
P(1)=0.6

c=k⊕m

P(“Yes” | c=1)=?

k=0 k=1

m=„Yes“ c=1 P=0.28 c=0 P=0.42

m=„No“ c=0 P=0.12 c=1 P=0.18

Alice

P(“Yes” | c=1) = 0.28 / (0.28+0.18) = 0.28 / 0.46 ≈ 0.61

Probability Exercise

• Remember: 𝑃𝑃 𝐴𝐴2|𝐴𝐴1 = 𝑃𝑃 𝐴𝐴1∩𝐴𝐴2
𝑃𝑃(𝐴𝐴1)

• 𝑃𝑃 𝑚𝑚|𝑐𝑐 = 𝑃𝑃 𝑐𝑐∩𝑚𝑚
𝑃𝑃(𝑐𝑐)

• P(c=0) = P(“Yes”)·P(k=1) + P(“No”)·P(k=0) = 0.54
• P(c=0 and m=“Yes”) = P(“yes”)·P(k=1) = 0.42
• P(“Yes” | c=0) ≈ 0.77 P(“Yes” | c=1) ≈ 0.61

43

Alice Bob

Eve
Message m
P(“Yes”)=0.7
P(“No”) =0.3

Key k
P(0)=0.4
P(1)=0.6

c=k⊕m

P(“Yes” | c)=?
P(“No” | c) =?

One-way functions – cryptographic hash functions

• One-way function f:
– calculating f(x)=y is easy
– calculating f-1(y)=x is hard

• computation / storage
– open question: Do one-way functions exist?

• Cryptographic hash function h
– might have different properties depending on the use case
– collision resistance:

• it is hard to find x, y with h(y)=h(x) and y≠x
• note: h is usually not collision free, because |h(x)| ≪ |x|

– preimage resistance / one-way function / secrecy
• given h(x) it is hard to find x

– second-preimage resistance / weak collision resistance / binding
• given x, h(x) it is hard to find y with h(y)=h(x) and y≠x

– Note:
• h is not necessarily a “random extractor”
• only one of “secrecy” and “binding” can be information theoretic secure

44

45

Symmetric authentication system

key
generation

encode

Show-case with lock; 2 identical keys

test:
MAC =
k(x) ?

x, k(x)

plaintext with
authenticator

k

k

random
number

plaintext
x x,

secret area

“pass” or “fail”=:MAC
(message
authentication
code)

more detailed
notation

r

gen

k:=gen(r)

code

MAC:=code(k,x) MAC = code(k,x)
?

Domain of trust Domain of trust

Area of attack

secret key

plaintext and
test result

46

Calculating with and without p,q (2)

Zn
* : multiplicative group

a ∈ Zn
* ⇔ gcd (a,n) = 1

• Inverting is fast (extended Euclidean Algorithm)
Determine to a,n the values u,v with

a • u + n • v = 1
Then: u ≡ a-1 mod n

example: 3-1 mod 11 ?
= -11 + 4 • 3

11 = 3 • 3 +2 = 1 • 3 - 1 • (11 - 3 •3)

3 = 1 • 2 +1 1 = 1 • 3 – 1 • 2

⇒ 3-1 ≡ 4 mod 11

Visual Cryptography Scheme
by Naor and Shamir (simplified)

47

Plaintext-
Pixel

Pixelblock
Slide 1

Pixelblock
Slide 2

Superposition

Case 1

Case 2

Case 1

Case 2

Key Ciphertext

Beispiel

48

Example

49

ausprobieren: http://www-sec.uni-regensburg.de/vc/

Plausible Deniability

50

cipher
text

Key 1 Key 2

Do not reuse keys!

51

Key

Ciphertext 1 Ciphertext 2

Password based authentication

• Simple approach

52

User Server

Login Password
… …
dog bone
… …

(dog,bone)

≟

yes grant
access

deny
access

no

Password based authentication

• Simple approach – security problems

53

User Server

Login Password
… …
dog bone
… …

(dog,bone)

≟

yes grant
access

deny
access

no

Attacker might get access!

Password based authentication

• Enhanced approach using one way (hash) functions

54

User Server

Login Password
… …
dog h(bone)
… …

(dog,bone)

≟

yes grant
access

deny
access

no
calculates
h(bone)

Password based authentication

• Enhanced approach using one way (hash) functions

55

User Server

Login Password
… …
dog h(bone)
… …

(dog,bone)

≟

yes grant
access

deny
access

no
calculates
h(bone)

Slightly reduced risk, if
attacker gets access.

Cryptanalytic Time – Memory Trade-Off

• Martin E. Hellman: “A Cryptanalytic Time – Memory
Trade-Off”

• main idea:
– store only certain parts of the lookup table
– regenerate the missing parts on demand

• requires “reduce” function f
– f: H P (H: set of hash values, P: set of passwords)
– note: f is NOT the inverse of h

• general procedure:
– calculate a chain of hash and reduce function calls

• p h() f() h() f() h () … f() p’
– store first and last value in a table

• sort by the last value
– length of chain influences Time – Memory trade-off

56

Cryptanalytic Time – Memory Trade-Off

• Example:

57

sonne MD5 97ad856de10a64018f15e8e325ab1d0d

reduce f

boosa

aitha

caing

MD5

reduce f

MD5

reduce f

61bd9c7e4ae81f59c4db6c7f954a5144

10585a288fa5e7c3dd28b41b65302cdb

1339 · 7807 mod 16157 16151

mod 9000+1000

8151

9591

6399

· 7807 mod 16157

mod 9000+1000

· 7807 mod 16157

mod 9000+1000

8591

5399

Cryptanalytic Time – Memory Trade-Off

• 2nd example
– breaking of PINs
– h(x):= (x·7807) mod 16157
– f(x) := x mod 9000 + 1000

• PIN-table:
1309–9139–7018–2139
2439–9327–4447–4493
1084–4677–6676–5207
1339–8151–9591–6399
3128–8069–6697–7584

58

table entry: 1339 : 6399

Cryptanalytic Time – Memory
Trade-Off

• PIN-table:
2439–9327–4447–4493-1003
1084–4677–6676–5207-1037
3128–8069–6697–7584-1040
2824-9820-7932-3500-4013
1339–8151–9591–6399-7706
1309–9139–7018–2139-9992

• Breaking a PIN:
– Goal: find PIN for given hash value h(PIN)
– Algorithm:

• 1. hash / reduce until value is in the right column
• 2. take left column value
• 2. hash / reduce until PIN is found

– h(x):= (x·7807) mod 16157
– f(x) := x mod 9000 + 1000

59

h(PIN)

reduce f

PINi

in table
(right col.)

?

h(PINi)

PINi

no
take PINj

from table
(left col.)

h(PINj)
=

h(PIN)
?

found
PIN = PINj !

reduce
f(h(PINj))

yes

yes

no

Try to break Andi‘s password: andi:11500

Remaining problems of password based authentication
based one way functions

• remaining possible attack:
– pre-computation

• countermeasure:
– salt & pepper!
– h(x) h(salt,x) h(salt,f(x,pepper))
– salt:

• long (e.g. 128 bit) random value
• some part could be stored together with password (i.e. 104 bit)
• some part could not be stored at all (i.e. 24 bit)

– verification: iterate over all possible salt values

– pepper:
• random value
• stored separate from password list
• unique per system or per password

– additional: repeated hashing
 pre-computation has to be done for each possible salt & pepper

60

Login Password
… …
dog h(bone)
… …

Remaining problems of password based authentication
based one way functions

• remaining possible attack:
– dictionary attack
– problem: people do not chose

passwords randomly
– often names, words or predictable numbers

are used
– http://www.whatsmypass.com/the-top-500-worst-passwords-of-all-time
– attacker uses dictionaries for brute force attack
– prominent program: John the Ripper

• supports dictionary attacks and password patterns

• possible solutions:
– enforce password rules

• consider usability
– pre-check passwords (e.g. using John)
– train people to “generate” good passwords

• Example: sentence password
• “This is the password I use for Google mail” “TitpIu4Gm”

61

Login Password
… …
dog h(salt,bone)
… …

http://www.whatsmypass.com/the-top-500-worst-passwords-of-all-time

Hash functions for storing passwords

Usual requirement on cryptographic hash functions:
• quickly process large amounts of input data

Problem:
• makes brute force attacks more efficient
• Example: GPU – 200.000.000.000 Hash/s (>237) [MD5]

Special case passwords:
• small inputs (<512 bit)
• some waiting time for login acceptable

• ~ 1 second
 Hash function does not need to be super efficient

Therefore, to make brute force attack more difficult:
• Hash function should not be efficient (implementable)

Hash functions for storing passwords

Hash function should not be efficient implementable
• Software:

• Consider modern CPUs
• Multi-Core / Multi-Threaded
• SIMD / Vector Extensions (AVX512)
• crypto extensions (AES / SHA)
• Cache-sizes (L1, L2, L3 Cache)
• Branch Prediction
• …

• Consider commodity „special hardware“
• GPUs
• KI /ML accelerators

• Hardware
• FPGA
• special ASICs

• Bitcoin-Mining

• future proven
• easily adaptable (parameters) considering future hardware (improvements)

Hash functions for storing passwords

Some examples
• bcrypt

• Niels Provos, David Mazières: „A Future-Adaptable Password Scheme“,
USENIX, 1999

• based on Blowfish
• symmetric block cipher

round_keys=EksBlowfishSetup(cost, salt, input) // inefficient!
hash="OrpheanBeholderScryDoubt" // 3 x 64-bit blocks

loop (64)
{

hash=Blowfish_ECB(round_keys,hash)

}

– good protection against software / GPU based brute-force-attacks
– weak protection against ASIC-based brute-force-attacks

Hash functions for storing passwords

Some Examples
• PBKDF2 (Password-Based Key Derivation Function 2)

• originally part of RSA Laboratories PKCS#5-standard
• purpose: derive symmetric keys from password
• now RFC 2898
• approved by NIST in SP 800-132 (December 2010)

• h=PBKDF2 (passwd, salt, iterations)
{

h=Hash(passwd||salt||iterations);

loop(iterations-1)

{

h=h XOR Hash(passwd||h);

}

return h;

}

– good protection against CPU-based software brute-force-attacks
– weak protection against ASIC/FPGA/GPU-based brute-force-attacks

PBKDF2—
increase memory consumption

• h=PBKDF2 (passwd, salt, iterations)
{

i=0

h[i++]=Hash(passwd||salt||iterations);

loop(iterations-1)

{

h[i+1]=h[i] XOR Hash(passwd||h[i]);

i++;

}

sort(h[]);
i=0;

loop(iterations/2)

{

res=res + h[i] * h[i+1];

i+=2;

}

return res;

}

Hash functions for storing passwords

• Some Examples
• scrypt

• Colin Percival: “Stronger Key Derivation Via Sequential
Memory-Hard Functions”, 2009

• published in RFC 7914
• Goal: make hardware implementation expensive
• Strategy:

• Increase memory consumption
• Realisation:

• algorithm requires large vector of pseudorandom elements,
which are access in pseudorandom order

• Additionally: „Costs“ can be parameterised

Hash functions for storing passwords

• Some Examples
• Argon2

• Alex Biryukov, Daniel Dinu, Dmitry Khovratovich:
“Argon2: the memory-hard function for password
hashing and other applications”, 2015

• Winner of the Password Hashing Competition (PHC)
• Community driven competition (2013-2015)

• similar goals / solutions like scrypt
• not so well analysed yet

69

Symmetric authentication systems

Key distribution:
like for symmetric encryption systems

Simple example (view of attacker)

Security: e.g. attacker wants to send T.
a) blind: get caught with a probability of 0.5
b) seeing: e.g. attacker gets (H,0) ⇒ k ∈ {00, 01}

still both: (T,0) and (T,1) have a probability of 0.5

The outcome of
tossing a coin
(Head (H) or Tail (T))
shall be sent in an
authenticated fashion:

Message,
MAC

Message
H T

ke
y

00 H,0 T,0
01 H,0 T,1
10 H,1 T,0
11 H,1 T,1

One Time Pad – Attacks on Integrity

• addition mod 4
• original ciphertext: 11
• cases:

• 1. possibility: sent ciphertext 00

• 2. possibility: sent ciphertext 10

70

key 00 01 10 11
plaintext 11 10 01 00
manipulated
plaintext 10 11 00 01

manipulated
ciphertext 10 00 10 00

resulting plaintext 00 11 10 01

resulting plaintext 10 01 00 11

71

Goal/success of attack

a) key (total break)

b) procedure equivalent to key (universal break)

c) individual messages,

e.g. especially for authentication systems
c1) one selected message (selective break)
c2) any message (existential break)

72

Types of attack

a) passive
a1) ciphertext-only attack
a2) known-plaintext attack

b) active
(according to encryption system; asym.: either b1 or b2;

sym.: b1 or b2)
b1) signature system: plaintext → ciphertext (signature)

(chosen-plaintext attack)
b2) encryption system: ciphertext → plaintext

(chosen-ciphertext attack)
adaptivity

not adaptive
adaptive

severity

73

Symmetric Cryptosystem DES
64-bit block plaintext

IP

round 1

round 2

round 16

IP -1

64-bit-block ciphertext

R0L0

R16L16

R1L1

R2L2

R15L15

K1

K2

K16

generation of
a key for
each of the
16 rounds

64-bit key
(only 56 bits in use)

74

One round

Feistel ciphers

f Ki

Li-1 Ri-1

Li = Ri-1 Ri = Li-1 ⊕ f(Ri-1, Ki)

75

Why does decryption work?

f Ki

Li-1 Ri-1

Li = Ri-1 Ri=Li-1⊕f(Ri-1, Ki)

f Ki

Ri=Li-1⊕f(Ri-1, Ki) Li = Ri-1

Ri-1 Li-1

Decryption
trivial
Li-1 ⊕ f(Ri-1, Ki) ⊕ f(Li , Ki) =
Li-1 ⊕ f(Li, Ki) ⊕ f(Li , Ki) = Li-1

replace Ri -1 by Li

Encryption round i Decryption round i

76

Encryption function f

S8S7S6S5S4S3S2S1

E

48

48

Ri-1
32

P
32

f(Ri-1, Ki)

32

Ki
48

Expansion

Use key

Mixing

Make f (and DES) non-
linear (permutations and
⊕ are linear)

Terms
• Substitution-permutation networks
• Confusion - diffusion

“substitution box” S can implement any
function s : {0,1}6 → {0,1}4,
for example as table.
For DES, the functions are fixed.

77

Generation of a key for each of the 16 rounds
64-bit key

(only 56 bits in use)

PC-1

LS1 LS1

LS2 LS2

D0C0

D1C1

D2C2

D16C16

PC-2

PC-2

PC-2

K1

K2

K16

28 28

56 48

choose 48 of the
56 bits for each
key of the 16
rounds

78

The complementation property of DES

DES(k, x) = DES(k, x)

79

One round

f Ki

Li-1 Ri-1

Li = Ri-1 Ri = Li-1 ⊕ f(Ri-1, Ki)

complement complement

complement complement

complement

original

80

Encryption function f

S8S7S6S5S4S3S2S1

E

48

48

Ri-1
32

P
32

f(Ri-1, Ki)

32

Ki
48

complement

complement

original, as 0 ⊕ 0 = 1 ⊕ 1 and 1 ⊕ 0 = 0 ⊕ 1

original

original

	Important Terms
	Threats and corresponding protection goals
	Threats and corresponding protection goals
	Definitions of the protection goals
	Protection against whom ?
	Considered maximal strength of the attacker
	Observing vs. modifying attacker
	Strength of the attacker (model)
	Realistic protection goals/attacker models:�Technical solution possible?
	Security in computer networks
	Multilateral security
	Multilateral security (2nd version)
	Multilateral security (3rd version)
	Protection Goals: Sorting
	Protection Goals: Definitions
	Additional Data Protection Goals: Definitions�(Rost/Pfitzmann 2009)
	Correlations between protection goals
	Correlations between protection goals
	Physical security assumptions
	Key exchange using symmetric encryption systems
	Key exchange using symmetric encryption systems
	Needham-Schroeder-Protocol using Symmetric encryption
	Needham-Schroeder-Protocol using Symmetric encryption
	Asymmetric encryption system
	Needham-Schroeder-Protocol using Asymmetric encryption
	Needham-Schroeder-Protocol using Asymmetric encryption
	Attack on asymmetric Needham-Schroeder-Protocol�[Loewe 1996!]
	Attack on asymmetric Needham-Schroeder-Protocol
	One-Time-Pad mod 4
	Cipher Block Chaining (CBC)
	Cipher Block Chaining (CBC) (2)
	CBC for authentication
	Why CBC IV should be random?
	CBC for Confidentiality & Integrity
	Whole Disk Encryption – Requirements
	Watermarking Attack on Whole Disk Encryption
	Watermarking Attack on Whole Disk Encryption
	Watermarking Attack on Whole Disk Encryption
	Watermarking Attack on Whole Disk Encryption
	Watermarking Attack on Whole Disk Encryption
	Probability Exercise
	Probability Exercise
	Probability Exercise
	One-way functions – cryptographic hash functions
	Symmetric authentication system
	Calculating with and without p,q (2)
	Visual Cryptography Scheme�by Naor and Shamir (simplified)
	Beispiel
	Example
	Plausible Deniability
	Do not reuse keys!
	Password based authentication
	Password based authentication
	Password based authentication
	Password based authentication
	Cryptanalytic Time – Memory Trade-Off
	Cryptanalytic Time – Memory Trade-Off
	Cryptanalytic Time – Memory Trade-Off
	Cryptanalytic Time – Memory Trade-Off
	Remaining problems of password based authentication based one way functions
	Remaining problems of password based authentication based one way functions
	Hash functions for storing passwords
	Hash functions for storing passwords
	Hash functions for storing passwords
	Hash functions for storing passwords
	PBKDF2—�increase memory consumption
	Hash functions for storing passwords
	Hash functions for storing passwords
	Symmetric authentication systems
	One Time Pad – Attacks on Integrity
	Goal/success of attack
	Types of attack
	Symmetric Cryptosystem DES
	One round
	Why does decryption work?
	Encryption function f
	Generation of a key for each of the 16 rounds
	The complementation property of DES
	One round
	Encryption function f

